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ANALYSIS OF HUMAN PROTEINS THAT PLAY CRITICAL ROLES IN HIV 
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 The thesis work contains two projects under the same umbrella. The first project is 

to provide a detailed analysis on the behavior of interfacial water molecules at protein-

protein complexes, in this case focusing on homodimeric complexes, and to investigate 
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their effect with respect to different residue types. For that reason the homodimeric data-

set, which includes high-resolution (≤ 2.30 Å) X-ray crystal structures of 252 (140 

Biological & 112 Non-biological) protein complexes was chosen to explore fundamental 

differences between interfaces that  Nature has “engineered” vs. compared to interfaces 

found under man-made conditions. The data set was comprised of 5391 water molecules 

where a maximum of 4 Å from both interfacing proteins. Our analysis is applied a suite of 

modeling tools based on HINT, a program for hydropathic analysis developed in our 

laboratory. HINT is based on the experimental measurement of the hydrophobic effect. 

The second project is designed to explore various means of suppressing the expression of 

human genes that play critical role in HIV pathogenesis. To achieve this aim, a data set of 

Affymetrix Human HG Focus Target Array, which measures the expression levels of HIV 

seronegative and seropositive individuals in human PBMCs, was analyzed with Pathway 

Studio 9.0 software. This work gives insight into the elucidation of the important 

mechanisms of human proteins interactions in HIV seropositive individuals and their 

implications. Hence, we found the kind and types of microRNAs that are suppressing the 

human genes which have great role for HIV replication in a cell. 
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CHAPTER 1 

   GENERAL BACKGROUND 

 

1.1 Protein-Protein Interactions  

Animal and plant cells are filled with macromolecules that interact in a multitude 

of ways. Most of these interactions are transitory and trivial, but a few lead to the 

development of functionally relevant assemblies through the specific recognition of two 

partner molecules. Specific recognition is subject to strong positive biological selection, 

whereas the short-lived interactions undergo no selection or, more likely, they undergo 

a negative selection to prevent the formation of combinations that would harm the cell. 

Most of the macromolecules that exist in cells are proteins and their interactions with 

other proteins have many different chemical and physical bases. First, many biological 

processes are carried out, or regulated, through the interactions between preformed 

protein complexes [1]. The importance of such interactions in biology has made the 

protein recognition process an area of considerable interest. Second, many biological 

functions involving the formation of protein-protein complexes with finite lifetimes are 

formed between polypeptide chains of different sequences.  

The two different types of complexes are homodimeric complexes, which are 

formed between two or more identical polypeptide chains and are usually symmetric, 

and hetrodimeric complexes, which are formed between different chains. In order to 

fully appreciate these biological associations, it is important to distinguish between the 

different types of complexes when analyzing the intermolecular interfaces that occur 
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within them [2]. The subunits that form homodimeric complexes are not found in nature 

as stable structures inside the cell, and the complex formation occurs concurrently 

during the folding process. On the other hand, the subunits of hetrodimeric complexes 

are regularly, but not constantly, independently stable inside the cell and they interact 

with each other to carry out a specific function in the cell. 

It is worth noting that the stability of protein-protein complexes depends on the 

physiological conditions and the complex’s surrounding environment [3]. For a large 

number of reasons it has been of a great interest over the past two decades to examine 

and understand the difference between various classes of protein-protein interfaces. 

Protein-protein interfaces have been subjected to many structural and computational 

analyses [4]. The interfaces of homodimeric complexes have greater numbers of 

interface residues and H-bonds than heterodimer interfaces, which means the density of 

hydrogen-bonds per residue is greater for heterodimer interfaces [2]. 

A large number of computational analyses of protein-protein interfaces have 

focused on what can be learned from the sequences and folding of the interacting 

proteins. Using only the amino acid composition of a protein-protein complex, Ofran and 

Rost were able to statistically predict interface classes correctly in up to 100% of the 

cases [5]. In fact, prediction tools using only protein expression information can often 

predict the complex type even in the absence of a 3D structure [6-8]. 

A more basic distinction can be drawn between protein-protein associations that 

occur in nature vs. those that are a consequence of experimental factors. One example 

of this, which is particularly important, is the difference between protein-protein 
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interactions that are biologically relevant and those that are a consequence of 

crystallization. In chapter two of this thesis, we are focusing on this difference. 

It has been reported that support vector machine-based classification can be 

used to differentiate biological interactions from non-biological (crystal packing) contacts 

and differentiate obligate interactions from non-obligate [9]. In one algorithm, called 

NOXclass, the authors utilized six different attributes: interface area, ratio of interface 

area to protein surface area, amino acid composition of the interface, correlation 

between amino acid compositions of the interface and the overall protein-protein 

surface, interface shape complementarity, and conservation of the interface. NOXclass 

is reported to achieve 91.8% accurate classifications based on a leave-one-out cross-

validation procedure [9]. Other support vector machine-based classifiers to predict 

protein-protein interface types have fared more poorly [10]. 

1.2 Role of water studies in protein-protein interface  

The role of water molecules at protein-protein interfaces has been seeing 

increasing attention due to water’s significant and varied contributions to protein-protein 

binding mechanisms [11]. The most basic role of a water molecule is to bridge polar 

interactions that are either too distant or energetically unfavorable. But, water molecules 

are also important even when they are displaced! They were found to be crucial in 

predicting hot spots (residues accounting for disproportionate binding free energy) in 

protein-protein complexes due to the water-entropy effect, which is a consequence of 

the hydrophobic effect [12]. Similarly, a recent review of polyproline recognition by 

protein-protein interaction domains showed that combining hydrophobic interactions 
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with strong networks of water-mediated hydrogen bonds is a mechanism that has been 

exploited repeatedly to favor the adaptability and plasticity of different families of 

proteins [13]. 

Despite the extensive studies on understanding the differences among protein-

protein interface types, the role of water in classifying these interfaces has received less 

attention. In most cases, water is an important protein structural feature that may add 

plenty of information to the protein interfacial definition [14]. Sonavane and Chakrabarti 

examined the cavities between subunits in homodimeric and heterodimeric complexes, 

respectively, and their hydration states, and found that the fraction of water molecules 

possessing a direct hydrogen bond with both subunits was  37% and 51%, in 

homodimeric and heterodimeric complexes, respectively, and that the fraction with 

hydrogen bonds to neither subunit was 10% and 5%, respectively[15]. However, this 

analysis was not performed on protonated and H-bond optimized structures; thus no 

information on the quality of the reported hydrogen bonds could be provided. 

Nevertheless, this study also quantified the role of water molecules in neutralizing the 

destabilizing effect of like-charges on the two interacting subunits [15]. 

In a protein-water-protein interface model of a nested-ring, an atom re-

organization method was used to detect hydration trends and patterns between 

biological and non-biological interfaces [16]. According to this model, biological 

interfaces are found to be drier than the non-biological interfaces. That research 

organized atoms at the same burial level in each tripartite protein-water-protein interface 

into a ring. Then, the rings of an interface are ordered with the core atoms placed at the 

center of the structure to form a nested-ring topology. Based on this topology, Li et al. 
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[16] found that water molecules on the rings of an interface are generally configured in a 

dry-core-wet-rim pattern with a progressive level-wise solvation towards to the rim of the 

interface and that his solvation trend becomes sharper when counter ions are separated 

[16]. Their analysis was based solely on solvent-accessible surface area (SASA) of 

water molecules and their contact distances and used B-factors for further investigation. 

It should be noted, however, that we previously did not find B-factors to be useful for the 

prediction of water conservation [17]. 

In a previous study from our group [18], a data-set of 179 high resolution (< 2.30 

Å) X-ray crystal structures that was composed of mainly biological hetero-protein-

protein complexes with all hydrogens in optimized orientations, we reported that of the 

4741 interfacial water molecules: a) 21% were involved in (bridging) interactions 

favorable with both proteins; b) 53% were favorably interacting with only one protein; 

and c) 26% had no favorable interactions with either protein. This trend was shown to 

independent of the crystallographic resolution, which supports the assertion that the 

majority of even the water molecules unfavorable with respect to both proteins are not 

crystallographic assignment errors or artifacts.  It was also shown that the interactions 

of water molecules with residue backbones are consistent for all classes, accounting for 

21.5% of all interactions, and that interactions with polar residues are significantly more 

common for bridging waters, while interactions with non-polar residues dominate the 

last group. Water molecules that interact favorably with both proteins stabilize on 

average the protein-protein interaction by (-0.46 kcal mol-1), but overall, the average 

contribution of a single water molecule to the protein-protein interaction energy is 

unfavorable (+0.03 kcal mol-1). Interestingly, analysis of the waters without favorable 
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interactions with either protein suggests that this is a conserved phenomenon: 42% of 

these waters have SASA ≤ 10 Å and are thus largely buried within the protein-protein 

interface, and 69% of these are within predominantly hydrophobic environments. Such 

water molecules may have an important biological purpose in mediating protein-protein 

interactions [19]. 

Based on the fundamental and intriguing results of our previous study [18], we 

have expanded our work to investigate a larger and more themed dataset in order to 

better understand roles of water molecules in forming the interfaces of biological and 

non-biological complexes. This thesis describes a detailed analysis of interfacial water 

molecules found in 252 X-ray crystal structures of protein-protein complexes extracted 

from the RCSB Protein Data Bank [20]. Of the 252 X-ray crystal structures, 140 are 

from biological homo-protein protein complexes while the other 112 structures are from 

non-biological protein-protein interfaces, (i.e., protein-protein interactions that are 

believed to be formed only under crystallographic conditions).  

In these studies, hydrophobicity is the major factor that stabilizes protein-protein 

association; thus, their complementarity plays a selective role in defining which proteins 

may associate [21]. Bahadur, et al. [4] suggests that understanding and being able to 

predict non-biological associations could be key to discriminating inappropriate protein-

protein binding that leads to disease [1].  

In chapter two of this thesis, we seek to understand protein-protein interactions 

by answering a few questions about their interfaces: Are the waters at non-biological 

interfaces playing the same role as those at biological interfaces? Are they energetically 
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favorable or unfavorable for each residue type? Which association type, biological or 

non-biological, relies more on water mediated interactions with backbone atoms? Is 

there a significant difference on the total energetic contribution of water for biological 

interfaces and non-biological interfaces? 

1.3  Protein-Protein Interaction Networks 

Biological interactions of proteins with other proteins are variable in their nature 

and are heterogeneous, both spatially and temporally [22]. The varied natures of 

protein-protein interactions (PPIs) make the construction and analysis of biological 

network models a thought-provoking topic in the field of biological complexity as we 

attempt to represent their underlying systems. Network views of PPIs are undoubtedly 

powerful when a detailed view of a given subsystem is analyzed [23]. To accurately 

signify the interactions in the proteome, Hakes et al. [22] suggested two points: first, 

network properties need to be understood, and second, reasonably complete datasets 

are required.  In this way we can compose detailed information concerning the nature of 

interactions, including the specific functional implications of each interaction to ensure 

the connection between network analysis and biological understanding.  

The availability of large-scale protein-protein interaction data has led to the 

recent popularity in the study of protein interaction networks. Just as an immense 

amount of available sequence data has made it possible to attain an overview of the 

genome, it is hoped that this newly available interaction data will allow an analogous 

view of the interactome. The prospect of proposing biological conclusions from this 
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network structure is part of what makes protein-protein interaction data so fascinating 

and significant. 

Exploring protein-protein interactions on a more macroscopic level leads to the 

use of network analyses. In chapter three of this thesis, we seek to understand protein-

protein interactions networks by answering a few questions about their networks: Do 

MicroRNAs play great role as post-transcriptional regulators to influence human 

proteins that play critical role in HIV pathogenesis? Do the designated human proteins 

have significant interactions with other human proteins? How do we connect the 

implications of each human protein that play critical role in HIV pathogenesis with other 

human proteins and MicroRNAs, from their networks? 
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Chapter 2 

WATER MOLECULES AT PROTEIN-PROTEIN INTERFACES 

This chapter describes a general analysis of homodimeric protein-protein 

interfaces in 252 high resolution (better than 2.3 Å) X-ray crystal structures of protein-

protein complexes extracted from the RCSB protein Data Bank[20] and an in-depth 

assessment of the role of water molecules at biological and non-biological protein-

protein interfaces. 

2.1 Material and Methods  

2.1.1 Data Set 

2.1.2 Data set I:  

The protein-protein complex data set was obtained from an informational portal 

to a biological macromolecular structure database called the RSCB Protein Data Bank 

[20] by applying search filters for several structural criteria. The selection of these 

complexes were based on : 1) if the structure contains two chains of the same protein 

that have a minimum chain length of at least 100 amino acids, and 2) a structure with X-

ray resolution 2.3 Å or better. Finally, 252 structures (Appendix I) were randomly 

selected from this set for analysis. 
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2.1.3 Data set II: 

These datasets derived from the previous total dataset (Appendix I), are 

categorized to Biological (Appendix II) and non-biological (Appendix III) protein 

complexes based on ‘REMARK 350’ of each PDB file. The biological homo-dimer 

protein complexes are complexes that occur naturally, presumably for a biological 

purpose, whereas the non-biological interfaces are protein-protein interactions that are 

believed to be formed only under crystallographic conditions.  
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2.2  Methods  

After the list of proteins were organized, hydrogen atoms were added to each 

protein and these were minimized (Tripos forcefield, with Gasteiger-Hückel charges and 

distance-dependent dielectric) to a gradient of 0.01 kcal mol-1 Å-1, while the non-

hydrogen atoms were treated as an aggregate using Sybyl 8.1[24]. Then, the HINT 

modeling system was used for all further structural analysis. 

2.2.1 Hydropathic INTeractions (HINT): 

HINT is a novel empirical molecular modeling system for de novo drug design 

and protein or nucleic acid structural analysis [25]. The scoring used by the HINT model 

for biomolecular interaction is based on experimental logP for 1-octanol/water 

partitioning. HINT simultaneously accounts for enthalpy, entropic and solvation 

contributions to biological association [16] [25-27]. HINT also calculates 3D hydrophatic 

interaction maps that are uniquely instructive for understanding biomacromolecular 

structure: substrate /inhibitor/drug binding to proteins and nucleotides, protein subunit 

interactions and protein folding [26]. 

Several studies have been done via HINT and most of them resulted in an output 

that showed, in an intuitive way, the types and quality of the binding interactions 

between the ligand and the receptor [17]. In general, the software is useful: 1) to 

estimate LogP for modeled molecules or data files, 2) numerically and graphically 

evaluate binding of drugs or inhibitors into protein structures and scores docked ligand 

orientations, 3) to construct hydrophatic (lock and key) complementarity maps that can 

be used to predict an ideal substrate from a known receptor or protein structure, and 4) 
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to evaluate/predict effects of site-directed mutagenesis on protein structure and stability 

[28]. 

 For our analysis, we have given close attention for the HINT score, Rank, H-

Bond Score, Acid/Base Score, Hydrophobic Score, Acid/Acid Score and Base/Base 

Score results of HINT. The combination of HINT score and Rank gives the ‘Water 

Relevance” of each interaction, which was designed as a global metric for describing 

the conservation of water between unliganded and ligand-bound states in protein 

complexes [29], but which is here extended to protein-protein complexes. 

2.2.2 Hydropathic Analysis  

In our study of protein-protein complexes in this study, each model contains two 

proteins and an array of solvent molecules. Each was analyzed with HINT [25] by 

computing intermolecular scores between the proteins and the interfacial solvent arrays.  

The HINT score (HTOTAL) is a double sum over all atom-atom pairs of the product (bij) of 

the hydrophobic atom constants (ai, partial log Poctanol/water) and atom solvent accessible 

surface areas (Si) for all interacting atoms, mediated by a function of the distance 

between the atoms: 

 HTOTAL = ∑i ∑j bij = ∑i ∑j (ai Si aj Sj Tij Rij + rij)    (1) 

where Rij is a simple exponential function, e-r [25], rij is an adaptation of the Lennard-

Jones function [30-31], and Tij is a logic function assuming +1 or -1 values, depending 

on the polar (Lewis acid or base) nature of interacting polar atoms.  HINT parameters 

and controls were as in previous studies [17][32-33]: partition calculations were 

performed with the “dictionary” method for the proteins with ‘essential hydrogens’, 
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where polar hydrogens are treated explicitly and non-polar hydrogens are ‘united’ with 

their parent non-polar heavy atom; the HINT option that corrects the Si terms for 

backbone amide nitrogens by adding 30 Å2 was used in this study to improve the 

relative energetics of inter- and intramolecular hydrogen bonds involving these 

nitrogens. Water molecules are partitioned as a “solvent set” with analogous HINT 

parameters.   Previous work [34-35] has suggested that approximately 500 HINT score 

units correspond to -1.0 kcal mol-1 of free energy.   

Each crystallographically observed orientation of water was optimized by an 

exhaustive protocol [28] that maximizes the HINT score with respect to its surrounding 

environment by evaluating its interactions with a “receptor” created from atoms within 

6.0 Å of it. For water molecules, this optimization rewards hydrogen bond and acid/base 

interactions while penalizing acid/acid and base/base interactions and those with 

hydrophobic entities on either of the two protein surfaces. Hydropathic interaction 

analysis was then performed with HINT for each of the optimized water molecules with 

respect to the two proteins with which it interacts.  The resulting data were tabulated by 

frequency and strength of interactions with each amino acid residue type.  In cases 

where a water molecule had significant interactions (>|10| HINT score units, 

approximately |0.02| kcal mol-1) with more than one residue on a protein, that water’s 

count was fractionally distributed to interacting residues based on the absolute values of 

the relative HINT scores for those residues that interact with it, i.e.,  
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 Wi = ∑n  { |Ai
c| / ∑i |Ai| }       (2) 

 

where Ai
c are the interaction HINT scores by residue type (i) interacting with water n.  

Similarly, the fractions of interactions with interfacial water molecules arising from 

backbone and sidechain atoms were calculated by weighted counts with Ai
c 

representing the interaction HINT scores by i, separated into c = sidechain or c = 

backbone subsets.  Heat maps for frequency and interaction scores and map clustering 

were calculated and drawn with R [36].   

2.2.3 Rank Algorithm 

Rank represents the weighted number of potential hydrogen bonds for each 

water molecule with respect to a pseudo-receptor of atoms from the target molecule(s) 

surrounding the water.  Rank is calculated as: 

 Rank = ∑n { (2.80 Å/rn) + [ ∑m cos (θTd - θnm) ]/6 }   (3) 

where rn is the distance between the water’s oxygen and the target’s heavy atom n (n is 

the number of interaction hydrogen bond donor/acceptor (doneptor) targets up to a 

maximum of 4).  This is scaled relative to 2.8 Å, the presumed ideal hydrogen bond 

length.  θTd is the optimum tetrahedral angle (109.5°) and θnm is the angle between 

targets n and m (m = n to number of valid targets).  The algorithm thus allows a 

maximum number of 4 doneptor targets (≤ 2 donors and ≤ 2 acceptors).  To properly 

weight the geometrical quality of hydrogen bonds, targets that have an angle less than 

60° with respect to other (higher quality) targets are rejected [28]. 
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2.2.4 Relevance   

Relevance is a synthesis of HINT score and Rank [29]. Specifically,  

Relevance = { PR(|WR| + 1)2 + PH(|WH| + 1)2 } / { (|WR| + 1)2 + (|WH| + 1)2 }  (4) 

where PR is the percent probability for water conservation based on Rank and PH the 

probability based on HINT score.  WR and WH are the weights for these probabilities, 

respectively.   The values for PR, PH, WR and WH are as shown in Figure 2 of [29].  This 

relationship was derived with the expectation that water molecules with Relevance ≥ 0.5 

would be conserved and those with Relevance < 0.5 would be non-conserved because 

the waters observed in unliganded proteins and analyzed in developing the training set 

were, by their nature, binary – either conserved and present in the ligand-bound 

complex or non-conserved and absent in the complex. 

2.3  Results and Discussion 

One of the main and unique abilities of water is to provide two hydrogen-bond 

acceptor sites and two donor sites. Thus, it can effectively bridge in every way possible 

[8]. In general, there are three distinct roles for waters at protein-protein interfaces: 

bridging i.e., having significant interactions with both proteins; non-bridging, i.e., having 

significant interactions with only one of the two proteins; or simply trapped without 

significant interactions with either protein.  

 The result and discussion in this chapter is divided into two specific objectives:   

1. A thorough analysis of water molecules at homo-dimer protein-protein interfaces 

and a comparison with previous results [18] observing the water molecule 

contribution in a homodimeric data-set.  



www.manaraa.com

16 
 

2. A detailed report on the role of water molecules between biological and non-

biological protein complex interfaces and also quantifying the interfacial water 

molecules for each residue type. 

 

2.3.1 Homodimeric Analysis  

2.3.1.1 The water Relevance metric 

We applied the Relevance algorithm to the set of water molecules at 

homodimeric protein-protein interfaces to understand to recognize their roles in these 

complexes. Interface water molecules are those that are a maximum of 4 Å from atoms 

in both proteins. The homodimeric dataset includes 252 proteins, comprised of 5391 

unique water molecules. Each complex has a number of interfacial water molecules, 

between 1 and 469 waters or an average of 75 at the protein-protein interface. Figure 

2.1 illustrates the percentage of water molecules for different Relevance classes. These 

classes correspond to how many proteins the water is Relevant with respect to. For all 

water molecules in this study 19% of them have Relevance class two, whereas 29% 

and 52% are in the zero and one Relevance classes respectively.  
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Figure 2.1 Distribution of interfacial water molecules by Relevance in the homodimeric 

protein-protein interfaces. 

This result suggests that just one-fifth of the waters that are found at the protein-

protein interface are truly bridging by binding with both proteins, while more than half of 

the waters are strongly associated with only one of the two proteins. On the other hand, 

nearly a one-third are not Relevant with respect to either protein. The water molecules 

that bind to only one protein can provide steric constraints for the protein association but 

they do not provide significant favorable energetic contribution to the association [18]. 
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2.3.1.2   Residue Preference for Interface H2O 

As defined above, water Relevance [29] is a metric from the combination of Rank 

[28] and HINT score [25]. To further understand the role of water molecules at protein-

protein interfaces, we applied the Relevance algorithm [29] to categorize the interfacial 

waters by amino acid residue types.  

The frequency and HINT scores of water molecules are tabulated by interaction 

counts (Table 2.1). These weighted counts are calculated as Σn{ |Ai| / Σi |Ai| }, where Ai 

are the interaction HINT scores by residue type (i) interacting with water n and the HINT 

scores are averaged two ways: first, over all waters in the set or Relevance subset, and 

second, by frequency (weighted count) of that residue type in the set or Relevance 

subset. As it was shown in earlier [18], the more polar residues, in particular Aspartate 

(Asp = 11.6%) and Glutamate (Glu =10.8 %), appear most often in interactions involving 

water at protein-protein interfaces. Cystine (Cys), even though it is a polar amino acid, 

is most rarely (i.e., 0.4%) found. However, the non-polar aliphatic hydrophobic residues: 

Glycine(Gly), Isoleucine(Ile), Valine(Val), Proline(Pro), Alanine(Ala), and Leucine(Leu) 

showed a prevalently negative HINT score, but frequencies of 4.6%, 5.4%, 6.4%, 6.9%, 

8.0% and 8.9%, respectively.  

These results are in qualitative agreement with our earlier study [18] for all water 

interactions between residues at protein-protein interfaces [18]. In fact, the percentage 

variations are very much similar for the zero, one and two Relevance classes. For 

instance, waters having Relevant interactions with both proteins, the polar acidic Asp 

and Glu amino acids, as well as the polar basic Lysine(Lys),Histidine(His) and Arginine 

(Arg) amino acids, exhibit frequency ranges from 4.1 % to 19.8%.  
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Table 2.1. Frequencies and HINT scores of water molecules at homodimeric protein-protein interfaces with respect 

to interacting amino acid residues.  

   All Waters     Water Relevant to  0 Water Relevant to  1 Water Relevant to 2   

Residue 
Type 

wtd. 
Count 

Average Hint 
Score 

wtd. 
Count 

Average Hint 
Score 

wtd. 
Count 

Average Hint Score wtd. 
Count 

Average Hint Score 

   For All For 
Type 

 For All For 
Type 

 For All For Type  For All For Type 

ALA 433 -38.81 -483.66 213 -68.24 -510.26 194 -32.80 -474.40 26 -8.78 -336.19 

ARG 342 14.66 231.10 46 3.14 108.08 190 15.60 223.37 105 31.50 299.01 

ASN 196 6.92 190.61 32 2.84 139.21 112 7.47 186.55 51 11.87 231.98 

ASP 627 59.26 509.53 49 11.30 364.60 373 68.31 513.64 205 109.87 536.91 

CYS 19 0.01 2.97 5 -0.37 -179.94 11 0.09 50.42 3 0.40 108.14 

GLN 195 5.21 144.44 37 1.38 58.85 112 5.51 137.51 45 10.47 232.60 

GLU 581 46.26 429.54 65 7.18 174.76 350 57.53 460.31 165 76.76 465.05 

GLY 247 -9.45 -206.50 76 -12.96 -269.72 132 -9.81 -208.37 39 -2.87 -74.71 

HIS 131 4.80 197.97 20 1.96 158.06 111 5.39 135.96 42 7.66 181.66 

ILE 294 -28.64 -526.04 96 -30.58 -507.09 159 -30.78 -540.62 38 -19.59 -512.75 

LEU 480 -43.18 -484.64 189 -56.10 -472.87 227 -39.32 -485.21 65 -33.44 -516.89 

LYS 262 -1.96 -40.45 62 -1.55 -39.66 142 -1.50 -29.58 58 -3.93 -67.85 

MET 162 -12.91 -430.55 65 -16.61 -527.29 79 -12.16 -430.04 18 -9.11 -512.90 

PHE 95 2.13 120.07 21 1.15 87.08 51 2.29 124.71 23 3.22 139.86 

PRO 373 -29.11 -421.18 195 -51.73 -422.31 154 -23.70 -430.00 24 -8.35 -354.21 

SER 188 -4.45 -127.40 52 -5.04 -153.15 98 -5.09 -145.14 38 -1.72 -377.59 

THR 274 -17.68 -348.04 98 -21.68 -351.27 137 -17.02 -347.52 39 -13.19 -341.69 

TRP 44 1.16 143.44 13 1.58 194.14 22 1.01 127.14 9 0.94 109.60 

TYR 105 4.17 213.84 27 4.22 245.31 56 4.42 221.38 22 3.36 154.87 

VAL 343 -31.90 -500.87 154 -51.70 -531.78 167 -28.91 -486.13 22 -8.86 -397.02 
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2.3.1.3 Distribution of HINT scores for water molecules 

The average HINT score for the waters in the entire data set is -12 (∆G ~ +0.024 

kcal mol-1); in other way, the total average HINT score (i.e., the sum) for all residue 

types and for all waters is -73.51(∆G ~ +0.15 kcal mol-1). Table 2.1 lists the HINT score 

values for each of the twenty amino acid types, by averaging over all waters in the data 

set and by averaging over all waters interacting (by weighted count) with that residue 

type. 

The distribution of HINT score for all water molecules ranges significantly (Figure 

2.2). Very informative distributions, however are observed between water molecules 

Relevant to zero, one and two proteins. In Figure 2.3, for Relevance zero, the HINT 

scores are mainly found in a range less than zero, and these waters have average HINT 

scores of -348.9 (+0.69 kcal mol-1). In the case of Relevance one (Figure 2.4), the 

average HINT scores is -36.4 (+0.07 kcal mol-1). Finally, the Relevance to two HINT 

scores predominantly have positive values of up to 500 (Figure 2.5) with an average 

HINT score of 202 (-0.40 kcal mol-1).  

Negative HINT scores are unfavorable while positive scores are favorable. Thus, 

the waters Relevant to neither protein are dominated by interactions with non-polar 

hydrophobic residues (i.e., Ala, Ile, Leu, Pro, Thr and Val) while for the waters Relevant 

to both proteins, the polar residues (Arg, Asp, Lys, His and Glu) dominate the 

interactions.  
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Figure 2.2 Histograms illustrating 
distribution of HINT scores for all water 
molecules in data set 
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Figure 2.4 Histograms illustrating 
distribution of HINT scores for water 
molecules with Relevance to one protein  
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Figure 2.3 Histograms illustrating 
distribution of HINT scores for water 
molecules with Relevance to neither 
protein 

0 500 1000

< -1000

(-500 to -1000)

(0 to -500)

0 to 500

500 to 1000

> 1000

Count 

T
o

ta
l 

H
IN

T
 s

c
o

re
 f

o
r 

w
a
te

r
 

Figure 2.5 Histograms illustrating 
distribution of HINT scores for water 
molecules with Relevance to both protein 
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2.3.2 Biological vs Non-biological Analysis 

2.3.2.1 The role of water molecules on Biological vs. non-biological 

interfaces 

The contribution and effect of water molecules in life are countless. They are the 

key molecules of life: from complex interdependent ecosystems to being a key 

component of nearly every biological reaction and interaction on the molecular scale. 

While protein-protein interactions are a topic of increasing relevance in the quest for 

new approaches to treat disease, much of the mechanism of this machinery of life is 

poorly understood, not the least of which are the roles of the many discrete water 

molecules observed at structurally characterized protein-protein interfaces. As it is 

known that a significant fraction of protein-protein interactions observed in X-ray crystal 

structures are not biologically relevant, but are, in fact, a consequence of the 

crystallographic lattice, the first question of some significance is: what are the 

characteristics of such “biological” and “non-biological” interfaces and are there 

differences in the roles that water molecules play in these two cases?  

 In previous studies of waters in the interface between interacting proteins, 

researchers have generally relied on interatomic distances in non-protonated 

crystallographic models to mark interactions between waters and proteins. This 

approach, however, often poorly represents the complex and subtle energetics and 

geometric preferences of hydrogen bonding [28]. 

 Based on the classification scheme described above, for waters Relevant to 

zero, one or two proteins, we examined the biological and non-biological datasets. First, 
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the results for the homo-oligomeric biological set of complexes are virtually identical to 

our previous result for hetero-oligomeric biological complexes [18]. As shown in Figure 

2.6, although the differences are not dramatic and not statistically significant, with both 

types of interfaces having more or less the same percentages, there is a tendency for 

the biological interfaces to have a larger fraction of “stabilized” waters and the 

crystallographic interfaces to have a larger fraction of “non-stabilized” waters. 
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Second, the average interface area of Biological interface was found to be 

significantly higher (p < 0.05) than that of the Non-Biological interfaces in our data set 

(2660 Å2 and 1510 Å2, respectively), which is in agreement with previous reports [9][14]. 

However, when examining the “wetness” of the two interfaces (average number of water 

molecules per 1000 Å), it was found that there are 8.5 and 9.6 water molecules per 

1000 Å on average for Biological and Non-Biological interfaces, respectively. 

Normalizing the number of waters in each relevance class by the interface areas of the 

complexes yields the result plotted in Figure 2.7. The difference in water density 

between biological and non-biological interfaces was found to be statistically significant 

for the case of Relevance zero waters (p < 0.05). 
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2.3.2.2 Residue Preference for waters 

Next, the HINT scores and water preferences for each residue type were 

calculated for both datasets (see Table 2.2).  Residues have similar preferences when 

interacting with water in the two types of interfaces with the exceptions of His, Phe and 

Tyr, where the preferences for interaction with water are as much as doubled in the 

biological dataset.  These residues, along with Cys, Met and Trp, are rare on protein 

surfaces [14], and their increased presence in water-mediated biological interactions 

would seem to be purpose-driven, while only random for the non-biological interface 

cases.  Also fairly dramatic is the increase in preference for Lys interacting with water at 

the non-biological interfaces (6.69% vs. 4.91%), which may be due to Lys’s high charge 

density and sidechain flexibility, which allows it to opportunistically interact with water 

molecules over a fairly large area.   

To explore these observations more quantitatively, in terms of energetics, HINT 

score values were calculated for each water molecule in the dataset.  The average 

water at a biological interface has a HINT score of 20 (-0.04 kcal mol-1), while at the 

non-biological interface it is -14 (+0.03 kcal mol-1).  Thus, as before [18], the average 

water is essentially meaningless.  Furthermore, for each of the twenty amino acid types, 

these scores were summed were averaged in two ways, first by averaging over all 

waters in the data set, and second by averaging over all waters interacting (by 

weighted count) with that residue type.  The first average, over all waters, reveals the 

magnitude and the nature of interaction; i.e., whether it is energetically favorable (HINT 

score > 0) or unfavorable (HINT score < 0) for each residue with water.  The latter 

average, weighted instead by the frequency of that particular water-residue interaction, 
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represents the score that would be expected if a “typical” water molecule interacted with 

only that residue, and thus reveals the specific benefits or costs of interacting with each 

residue type.  Tracking with the frequency results noted above, the average HINT 

scores for His and the hydrophobic residues Phe and Tyr are, for the biological dataset, 

more than twice those of the non-biological dataset.  These are three of the four residue 

types capable of π-stacking (the other being Trp), which is one of the reasons that they 

are less commonly found on protein surfaces.  The weighted HINT scores (Table 2.2) 

reveal the unsurprising result that hydrophobic residues have unfavorable interactions 

with water, while polar residues, with hydrogen bonding functional groups on their side 

chains, have favorable interactions with water.  The trends in differences between water 

molecules found at biological interfaces compared to those found at non-biological 

interfaces mirror, for the most part, what was seen in the unweighted average scores. 
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Table 2.2. The frequency of water-residue interactions and an average HINT score for 

all waters and residue type 

All Waters 

Residue 

Type 

Residue 

Preference of 

water (%) 

Average HINT 

score for all 

waters 

Average HINT 

score for residue 

type 
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 ALA 6.19 5.69 -28.08 -23.47 -453.41 -412.51 

 ARG 5.89 5.54 16.66 15.01 282.73 271.02 

 ASN 5.36 6.09 7.84 8.35 146.15 137.04 

 ASP 13.32 12.2 63.67 53.29 477.96 436.76 

 CYS 0.51 0.77 0.27 0.99 53.99 129.07 

 GLN 4.75 4.79 6.32 5.51 133.12 115.02 

 GLU 13.07 14.77 50.7 53.22 387.79 360.12 

 GLY 5.87 5.66 -13.18 -10.32 -224.4 -182.13 

 HIS 2.6 1.29 4.84 2.58 185.83 200.89 

 ILE 3.61 4.02 -19.29 -21.94 -534.52 -545.89 

 LEU 5.8 5.46 -28.46 -25.93 -490.47 -474.65 

 LYS 4.91 6.69 2.05 1.41 41.8 21.03 

 MET 2.12 1.53 -9.86 -6.49 -463.84 -423.47 

 PHE 1.59 0.9 1.64 0.37 102.81 41.35 

 PRO 5.14 5.98 -22.8 -27.24 -443.13 -455.43 

 SER 5.39 6.16 -3.69 -3.9 -68.45 -63.3 

 THR 5.87 5.65 -15.75 -16.49 -268.49 -291.83 

 TRP 0.82 0.78 1.11 1.28 135.69 163.91 

 TYR 2.4 1.53 4.6 1.19 191.26 77.9 

 VAL 4.75 4.48 -25.45 -21.46 -535.94 -478.84 
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We performed similar analyses on subsets of water molecules based on their 

Relevance classes. Our intent was to discern differences between the interfaces in 

biological and non-biological complexes based on the roles of the waters trapped in 

those interfaces.  Tables 2.3, 2.4 and 2.5 show the residue preferences and the 

average HINT scores for Relevance Zero, Relevance One and Relevance Two waters, 

respectively.   

In the case of Relevance Zero waters, generally, the more hydrophobic and π-

stacking residues (with the exception of Ile) are found preferentially in water interactions 

at biological interfaces, where Nature may have engineered a role for these non-

stabilized water molecules.    Likewise, the most polar residues, Arg, Asp, Glu and Lys, 

along with Ser, are present in more interactions with water at the non-biological 

interfaces.  These residues are often found at surfaces and their involvement in water-

bridged non-biological interactions with other proteins may be simply opportunistic.   

Relevance zero water has the same average HINT score (-285, +0.55 kcal mol-

1), dominated by hydrophobic-polar interactions (see Figure 2.10 & Figure 2.11) for both 

biological and non-biological interfaces.  One observation of note in Table 2.3 is the 

differences between residue-weighted HINT scores for biological and non-biological 

waters for interactions with Trp and Tyr.  Trp interacts favorably with water (-0.31 kcal 

mol-1) at biological interfaces, but is energetically neutral with respect to water at non-

biological interfaces.  Tyr interacts favorably with water (-0.25 kcal mol-1) at biological 

interfaces, but unfavorably (+0.20 kcal mol-1) at non-biological interfaces.    
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Table 2.3. The frequency of water-residue interactions and an average HINT 
score for waters Relevance to zero 

       Relevance Zero 

Residue 

Type 

Residue 

preference of 

water (%) 

Average HINT 

score for all 

waters 

Average HINT 

score for residue 

type 

B
io

lo
gi

ca
l 

N
o

n
-

B
io

lo
gi

ca
l 

B
io

lo
gi

ca
l 

N
o

n
-

B
io

lo
gi

ca
l 

B
io

lo
gi

ca
l 

N
o

n
-

B
io

lo
gi

ca
l 

 ALA 10.94 9.85 -50.88 -42.68 -464.68 -433.29 

 ARG 2.9 3.43 3.16 4.49 108.76 130.92 

 ASN 4.24 3.87 3.27 1.58 77.08 40.73 

 ASP 4.05 4.77 11.4 10.35 281.06 216.85 

 CYS 0.55 0.54 -0.17 -0.16 -30.11 -29.51 

 GLN 3.85 3.94 2.52 1.53 65.51 38.71 

 GLU 6.34 7.54 6.55 1.58 103.29 20.95 

 GLY 6.88 6.73 -18.18 -14.79 -264.16 -219.81 

 HIS 1.78 0.89 2.36 1.98 132.33 221.64 

 ILE 4.83 6.44 -23.47 -35.77 -485.96 -555.18 

 LEU 9.08 8.82 -43.52 -41.66 -479.22 -471.82 

 LYS 4.15 5.92 -4.21 -7.21 -101.46 -121.69 

 MET 3.67 2.23 -19.04 -11.78 -518.39 -529.15 

 PHE 1.73 0.62 0.71 0.56 40.97 89.45 

 PRO 10.52 11.08 -44.03 -50.48 -418.27 -455.57 

 SER 4.54 7.26 -5.29 -8.4 -116.47 -115.74 

 THR 8.72 7.7 -25.59 -25.36 -293.34 -329.02 

 TRP 0.64 0.53 1.01 0 158.12 0.88 

 TYR 2.07 1.2 2.68 -1.25 129.3 -104.24 

 VAL 8.47 6.6 -45.98 -29.85 -542.71 -452.27 
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There are some, mostly insignificant, differences between the water roles at 

biological vs. non-biological interfaces in the Relevance One cases (Table 2.4).  The 

surprisingly limited energetic contribution of Lys, for both types of interface, is an artifact 

of its dual nature – i.e., having a very polar amine functional group and a long 

hydrophobic chain; thus, on average, its two contributions cancel out.  

  The average HINT scores for Relevance One waters for the biological and non-

biological datasets are -33 (+0.06 kcal mol-1) and -5 (+0.01 kcal mol-1), respectively.  

This is seemingly a little unexpected; however, analysis of the types of interactions 

(Figure 2.12) reveals that Relevance One waters in the biological dataset have a larger 

contribution of unfavorable hydrophobic-polar interactions. 

Table 2.4. The frequency of water-residue interactions and an average HINT 

score for waters Relevance to one. 

Relevance One 

Residue 
Type 

Percentage 
preference of 

water 

Average HINT 
score for all 

waters 

Average HINT 
score for residue 

type 

B
io

lo
gi

ca
l 

N
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n
-
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lo
gi

ca
l 
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io
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gi

ca
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N
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n
-
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gi

ca
l 
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gi

ca
l 
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o

n
-
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 ALA 5.73 4.53 -27.09 -18.79 -472.77 -414.89 

 ARG 5.88 6.42 15.89 17.78 270.38 276.69 

 ASN 5.6 6.53 9.02 9.68 161.05 148.17 

 ASP 14.56 14.34 68.61 62.86 471.38 438.24 

 CYS 0.53 0.93 0.44 1.55 83.01 166.79 

 GLN 4.99 4.64 6.92 4.54 138.69 97.71 

 GLU 14.06 16.39 57.4 63.51 408.33 387.43 

 GLY 5.93 5.68 -12.49 -9.85 -210.5 -173.35 

 HIS 2.42 1.31 4.62 2.46 191.22 187.77 

 ILE 3.79 3.67 -22.19 -19.74 -585.87 -538.12 

 LEU 5.7 4.48 -29.56 -21.86 -518.36 -488.41 
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 LYS 4.58 6.39 -0.22 0.39 -4.87 6.07 

 MET 1.75 1.56 -8 -5.38 -457.94 -344.05 

 PHE 1.43 1.05 1.8 0.24 125.96 22.47 

 PRO 4.18 4.51 -20.04 -20.4 -479.84 -452.72 

 SER 5.67 5.56 -4.16 -3.84 -73.32 -69.09 

 THR 5.74 5.29 -16.18 -15.98 -282.16 -301.97 

 TRP 0.76 0.83 0.67 1.4 87.86 168.42 

 TYR 2.2 1.61 4.57 2.68 208.08 167.22 

 VAL 4.51 4.27 -24.02 -22.01 -532.05 -514.9 

 

The differences between the two types of interfaces for Relevance Two waters 

are also not dramatic (Table 2.5).  Relevance Two waters in biological interfaces have 

higher preferences (~ 2-fold) for His, Met, Phe and Tyr, which again may be related to 

the relative unlikelihood of these residues being found on regions of a protein surface 

not engineered for biologically-relevant interaction. 

Table 2.5. The frequency of water-residue interactions and an average HINT 

score for waters Relevance to two. 

Relevance Two 

Residue 
Type 

Percentage 
preference of 

water 

Average HINT 
score for all 

waters 

Average HINT 
score for residue 

type 

B
io

lo
gi

ca
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n
-
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io
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gi
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gi
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-
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l 
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n
-
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 ALA 1.9 2.28 -4.32 -5.88 -227.75 
-

258.02 

 ARG 9.38 6.45 34.21 24.06 364.9 373.1 

 ASN 6.04 8.41 10.07 15.43 166.6 183.49 

 ASP 20.85 18.09 111.33 94.99 534.03 524.99 

 CYS 0.41 0.67 0.37 1.27 88.83 190.08 

 GLN 5.16 6.53 9.16 14.43 177.59 221.1 

 GLU 18.32 21.79 84.48 106.67 461.01 489.47 

 GLY 4.56 3.94 -9.19 -4.53 -201.58 
-

114.99 
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 HIS 4.03 1.84 8.25 3.87 204.89 210.37 

 ILE 1.74 1.15 -6.98 -6.11 -402.39 
-

531.19 

 LEU 2.27 2.84 -8.22 -12.19 -362.2 
-

429.56 

 LYS 6.66 8.74 15.15 17.77 227.65 203.29 

 MET 1.31 0.35 -4.02 -1.15 -307.19 
-

326.55 

 PHE 1.86 0.94 2.29 0.46 123.41 48.52 

 PRO 1.42 1.95 -5.36 -9.18 -378.13 -471.1 

 SER 5.67 6.1 -0.65 3.02 -11.53 49.45 

 THR 2.9 3.38 -3.27 -3.89 -112.73 
-

115.11 

 TRP 1.18 1.04 2.37 2.95 201.15 284.62 

 TYR 3.32 1.82 6.87 0.98 207.25 53.55 

 VAL 1.04 1.7 -5.39 -6.72 -515.72 
-

395.28 

. 

Biological and non-biological interfaces have nearly the same average interaction 

type scores for waters with Relevance to zero, one and two proteins (Table 2.6 or 

Figure 2.10) and (Table 2.7 or Figure 2.11).  
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Table 2.6 (Biological) Average interaction type scores for waters with Relevance to 

zero,one and two proteins  
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Figure 2.10 Biological Average Interaction Type Scores for waters with 
Relevance to Zero,One and two protein 

H-Bond and Acid/Base Acid/Acid and Base/Base Hydrophobic/Polar

Water Relevance 

H-Bond and 

Acid/Base  

Acid/Acid and 

Base/Base  Hydrophobic/Polar  

0 571 -390 -454 

1 1014 -684 -349 

2 1317 -872 -230 
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Table 2.7 (Non-biological) Average interaction type scores for waters with 

Relevance to zero, one and two 

Water Relevance H-Bond and Acid/Base  

Acid/Acid and 

Base/Base  Hydrophobic/Polar  

0 489 -338 -426 

1 980 -664 -308 

2 1343 -897 -233 
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Figure 2.11 Non-biological Average Interaction Type Scores for waters 
with Relevance to Zero,One and two protein 

H-Bond and Acid/Base Acid/Acid and Base/Base Hydrophobic/Polar
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2.3.2.3 Backbone and Sidechain Preferences for Interfacial water  

   We next separated the residue’s contributions to interactions with water into 

those arising from main chain (backbone) atoms, i.e., C, O, N and CA, and their bonded 

hydrogens, and those arising from the sidechain atoms.  This may help us understand 

better the differences between residue interactions in the two datasets.  Our previous 

analysis [18] revealed that the average interaction score for a water molecule with a 

backbone atom is favorable, while the average interaction with sidechain atoms 

is unfavorable, although the identity of the sidechain plays an obvious major role.  We 

expected to see differences in modes of interaction with water for residues in biological 

vs. non-biological complexes. Figure 2.8 shows the HINT score averaged by number of 

water molecules for the backbone atoms in the biological and non-biological datasets. It 

appears that with the exception of Asp, Gly, His, Met, Ser and Trp, all the other residues 

have higher average HINT scores in biological complexes than those of the non-

biological complexes. Of those, Lys, Pro, Gln, Gly, Ile and Tyr are significantly higher 

(p<0.05), which explains the discrepancies found in Table 2.2. Figure 2.9 shows the 

HINT score averaged by number of water molecules for the Biological and Non-

biological datasets for the side chain atoms only. Surprisingly, polar residues such as 

Asp, Glu and His have better water mediated HINT scores in biological complexes. In 

particular, His has an unfavorable average score in non-biological interfaces in contrast 

to biological interfaces where His has a favorable water mediated average HINT score. 

Also, hydrophobic residues like Ala, Ile, Leu, Met and Trp have a better average HINT 

scores in biological complexes; however, only Asp and His were found to be 

significantly higher (p<0.05). 
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2.3.2.4 Residue Pair Preferences for All Water 

Figures 2.13 and 2.14 show the heat maps for HINT scores for all residue pairs 

interacting with waters, normalized by weighted frequency. These illustrate the 

propensity and energetics of water molecules “bridging” between the specified residue 

types; the deeper blue cells represent more favorable situations, e.g., Glu-H2O-Glu or 

Asp-H2O-Tyr, while the deeper red cells represent highly unfavorable situations, e.g., 

Ile-H2O-Val.   The heat maps appear to be similar with only subtle differences between 

biological and non-biological cases.  Clustering of these maps (Figures 2.15 and 2.16), 

however, more clearly highlights differences: in the biological interfaces (Figure 2.15), 

all charged polar residues (with the exception of His, which has a pKa of around 6.0) are 

dramatically separated from the other residues.  Cys, Met, Phe and Trp, are in a second 

distinct cluster whose commonality is difficult to understand, while the remaining twelve 

residue types are in very flatly defined clusters with mixed electronic properties for the 

member residues.  However, in non-biological interfaces (Figure 2.16) the clean 

distinction between charged and uncharged residues is no longer seen, as Asp, Glu, 

Arg and Lys cluster with the uncharged polar residues Asn and Ser, and surprisingly, 

Gly.   The backbone of Gly contains both a good hydrogen bond acceptor (O) and donor 

(N+H) and is more exposed than the backbones of all other residues, but is also the 

most hydrophobic backbone – possessing a methylene at CA.  The remaining thirteen 

residue types are distributed in two clusters that are even flatter than those observed for 

the biological interface case, but with similar content.   
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Figure 2.13 Heat maps depicting Res1-H2O-Res2 interactions for all water 

molecules found at Biological protein-protein interfaces. 

 

Figure 2.14 Heat maps depicting Res1-H2O-Res2 interactions for all water 

molecules found at non-biological protein-protein interfaces. 
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Figure 2.15 Dendogram indicating clustering of residues with respect to average 

HINT score (normalized by weighted count) in Biological Res1-H2O-Res2 

interactions for all waters 

 

Figure 2.16 Dendogram indicating clustering of residues with respect to average 

HINT score (normalized by weighted count) in non-biological Res1-H2O-Res2 

interactions for all waters 
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2.3.2.5 Crystallization and Water 

The conditions of crystallization force protein chains to bind together in 

conformations/arrangements that may not always be favorable.  The conditions of 

crystallization affect both biological and non-biological complexes and results in bringing 

the binding partners closer together.   Such associations may be unfavorable for some 

of the water molecules involved (i.e., Relevance Zero waters); however, they lead to a 

globally favorable energetic minimum for the whole complex.  In this case, the total 

energetic contribution of water ranges between -2.35 and 3.67 kcal mol-1 (average -2.10 

kcal mol-1) for biological interfaces and between  –1.38 and 3.07 kcal mol-1 (average -

1.46 kcal mol-1) for non-biological interfaces (see Table 2.10). 

Table 2.8. Average Total Energy of Waters for Protein-Protein Interfaces by Relevance 

 

In an analysis based solely on SASA, contact distance and B-factors of water 

molecules, Li et al. [16] used a tripartite protein-water-protein interface model and a 

nested-ring atom re-organization method to detect hydration trends and patterns 

between obligate, non-obligate and non-biological interfaces [16].  According to their 

model, biological interfaces are found to be drier than the non-biological interfaces.  Our 

Average Total energy of waters for Protein-protein Interfaces by Relevance

           Average Energy ( Kcal mol-1 )

Biological Non-biological

All waters 2.1 1.46

Relevance Zero waters 3.67 3.07

Relevance One waters 0.87 0.27

Relevance Two waters -2.35 -1.38
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analysis in the present work indicates that, although biological interfaces are more 

hydrophobic than non-biological interfaces, more importantly they are better designed to 

accommodate small polar molecules like water by engaging more of their hydrophobic 

residues’ backbone atoms in less unfavorable interactions with water molecules.  Some 

of the polar residues interact better with water molecules in biological interfaces than in 

non-biological interfaces.  Non-biological interfaces, on the other hand, are not designed 

to interact together, which often leads to unfavorable interaction with water – even 

though they are more polar than non-biological interfaces.  For a specific residue type, 

Tyr is more frequently found involved with water at biological interfaces compared to 

non-biological interfaces, but more specifically, Tyr interacts favorably with water in the 

Relevance Zero biological interfaces cases but unfavorably in the non-biological 

interface cases. Nature’s designated role for Tyr in protein-protein associations is 

clearly subverted in non-biologically relevant associations.   

2.4 Conclusions 

This analysis of water molecules at biological and non-biological protein-

protein interfaces has revealed new information about the structure of these interfaces. 

Our analysis was anchored by the HINT free energy forcefield and the Relevance 

metric.  The former characterizes the types and qualities of interactions between the 

interface waters and proteins, while the latter is a simple parameter that was previously 

shown to identify water molecules conserved/non-conserved in ligand binding sites 

[29].  This work on homodimeric complexes, differentiating between biological (largely 

obligate) and non-biological interfaces, is an extension of a previous study [18] of 

heterodimer complexes that were generally transiently formed.   
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First, from the perspective of water, there are surprisingly few differences 

between heterodimer and homodimeric datasets.  The broadest classification scheme 

we employed, by Relevance, showed the same distribution of waters (within 1%) 

amongst the Relevance Zero, One and Two classes.  This was somewhat surprising, as 

we expected that homodimeric formation would be using bridging waters more profitably 

than heterodimers.  Clearly, water is more than ubiquitous in protein-protein systems: it 

is pervasive.  Second, even the differences between biological interfaces and 

crystallographic (non-biological) interfaces are relatively modest at the Relevance class 

level: there are 5% more Relevance Zero waters at the non-biological interfaces, 

resulting in 3% and 2% fewer Relevance One and Zero waters, respectively, at non-

biological interfaces.  Again, this is somewhat surprising, as we expected a significantly 

larger fraction of Relevance Zero waters for the artificial constructs of crystallographic 

contacts, and a much larger fraction of Relevance Two waters for the obligate/biological 

interfaces where folding and association are more or less simultaneous, i.e., 

engineered.  Third, looking much deeper into the differences by analyzing the roles of 

different residues at these interfaces revealed a few notable observations: i) non-

biological interfaces are more polar than biological interfaces, yet there is better 

organized hydrogen bonding at the latter; ii) biological associations rely more on water-

mediated interactions with backbone atoms compared to non-biological associations – 

an indication of engineering by Nature; iii) aromatic/planar residues play a larger role in 

biological associations with respect to water because these residues would not normally 

be found on the surface unless there was a planned role for them; and iv) Lys has a 

peculiar role: it is often found on protein surfaces with its main role apparently solvating 
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the protein, but because of its flexibility and reach, plays an out-sized role in forming 

non-biological interfaces as it can often find a direct or water-mediated hydrogen-

bonding partner.   
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Chapter 3 

MOLECULAR INTERACTIONS NETWORKS OF HUMAN PROTEINS 

THAT PLAY CRITICAL ROLES IN HIV PATHOGENESIS  

 

3.1 Introduction: 

One of the major goals in proteomics is to develop a complete description of the 

protein interaction networks that underlie cell physiology. Conventionally, a protein-

protein interaction map is epitomized as a static network, where each node represents a 

protein and each edge represents a protein-protein interaction. These maps are called 

PPINs [37]. In reality, a PPIN is a dynamic entity because the functional state of the 

network depends on the expression of protein nodes [38]. In this chapter, we will first 

give a brief background about Human Immunodeficiency Virus (HIV), before we start 

describing the building of the interaction network of the human proteins that play critical 

role in HIV pathogenesis (HPPCR-HIV pathogenesis). HIV belongs to a class of viruses 

known as retroviruses. Retroviruses are viruses that contain RNA (ribonucleic acid) as 

their genetic material.  

 HIV has a small genome and therefore relies heavily on the host cellular 

machinery to replicate. Identifying which host proteins and complexes come into 

physical contact with the viral protein is crucial for a comprehensive understanding of 

how HIV rewires the host’s cellular machinery during the course of infection [39-40]. 

After infecting a cell, HIV uses an enzyme called reverse transcriptase to convert its 
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RNA into DNA (deoxyribonucleic acid) and then proceeds to replicate itself using the 

cell’s machinery [41]. 

Each day, HIV destroys billions of CD4+ T cells in a person infected with HIV, 

eventually overwhelming the immune system’s capacity to regenerate or fight other 

infections. When HIV infects a cell, the virus can hide within the cytoplasm (the jelly-like 

fluid that fills the cell) or integrate into the cell’s genetic material (chromosome).Shielded 

from the immune system, HIV can lie dormant in an infected cell for months or even 

years. These cells serve as a latent reservoir of the virus [39-40].  

A map of the physical interactions between proteins within a particular system is 

necessary for studying the molecular mechanisms that underlie the system. The 

analysis of interacting human and viral proteins has been successfully done using a 

variety of methods [40]; however, viral proteins can mimic native interfaces and thus 

interfere with binding events in host protein networks [42]. Also the knowledge of the set 

of interacting human proteins that play great roles in infectious diseases would greatly 

contribute to our understanding of the mechanisms of infection, and subsequently to the 

design of new therapeutic approaches [43]. We need, therefore, to look at a more 

complete presentation of protein interactions using common regulator and shortest path 

protein-protein networks. 

In this report we aim to identify the association of the HPPCR-HIV pathogenesis 

proteins with other human proteins and microRNAs, systematically and quantitatively, 

using Pathway Studio Software, version 9.0. MicroRNAs play a major role as post-

transcriptional regulators to influence a large proportion of genes in higher eukaryotes 
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[38]. First, we identified from literature resources 19 human proteins that play critical 

roles in HIV pathogenesis, including their accessory factors. By providing these testable 

protein data, we are able to define a reliable network of human protein-protein 

interactions. Then, we combine our selected proteins with a list of proteins generated 

from a gene expression data obtained using microarray experiments. Finally, we show 

evidence that most of the human proteins that have important roles in HIV pathogenesis 

are regulated by microRNAs in the PPINs. 

3.2  Data and Methods  

The first 19-Human proteins that play critical role in HIV pathogenesis (HPPCR-

HIV pathogenesis) data-set is derived from previously published HIV-human PPIs and 

host factors implicated in HIV function [39]. Jager et al. [40] explored in detail the 

biological significance of viral and human proteins interactions to advance the structural 

modeling of viral and human PPIs.  

We next analyzed a gene expression profile of HIV-1 patients and control samples to 

explicate the functional genomic relationships with other human proteins identified in the 

first data-set. The microarray data is derived from “Gene Expression Omnibus” (GEO) 

(www.ncbi.nlm.nih.gov/geo/ ) database that contains functional genomic data in Array- 

and sequence-based format.  

 

 

 

http://www.ncbi.nlm.nih.gov/geo/
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Table 3.1. List of 19-HPPCR-HIV pathogenesis and their number of   neighbors used to build the network. 

Name Info Description 

OTUD4 20 neighbors OTU domain containing 4 

CCR5 657 neighbors chemokine (C-C motif) receptor 5 

CCL5 1164 neighbors chemokine (C-C motif) ligand 5 

CXCR4 1150 neighbors chemokine (C-X-C motif) receptor 4 

CD4 2823 neighbors CD4 molecule 

IL10 2490 neighbors interleukin 10 

KAT5 290 neighbors K(lysine) acetyltransferase 5 

PPIA 298 neighbors peptidylprolyl isomerase A (cyclophilin A) 

CCR3 246 neighbors chemokine (C-C motif) receptor 3 

CCNT1 142 neighbors cyclin T1 

HIVEP1 16 neighbors human immunodeficiency virus type I enhancer binding protein 1 

HTATIP2 62 neighbors HIV-1 Tat interactive protein 2, 30kDa 

HTATSF1 25 neighbors HIV-1 Tat specific factor 1 

HIVEP2 53 neighbors human immunodeficiency virus type I enhancer binding protein 2 

VPRBP 31 neighbors Vpr (HIV-1) binding protein 

ITIH4 29 neighbors inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein) 

TARBP2 34 neighbors TAR (HIV-1) RNA binding protein 2 

TARBP1 11 neighbors TAR (HIV-1) RNA binding protein 1 

AGFG2 8 neighbors ArfGAP with FG repeats 2 
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3.2.1 Microarray Data 

Protein-based microarrays have been shown recently to be promising tools for 

analyzing small amounts of samples, while yielding the maximum data on the cell’s 

environment [44]. Microarray technology has become one of the indispensable tools 

that many biologists use to monitor genome-wide expression levels of genes in a given 

organism. A standard way of getting the data is by comparing expression of a set of 

genes from a cell maintained under particular conditions to the same set of genes from 

a reference cell maintained under normal conditions. 

In this analysis we used the Affymetrix Human HG Focus Target Array that 

measures the expression levels of HIV seronegative and seropositive individuals in 

human PBMCs in vivo [45]. Ockenhouse et al. [45] took a total of 87 primary clinical 

samples consisting of human peripheral blood mononuclear cells (PBMC), including 12 

seronegative samples from healthy control subjects, 22 seropositive samples from drug-

naïve persons, 21 seropositive samples from persons who had received at least 1 

antiretroviral drug regimen, and 32 seropositive samples from persons whose CD4+ T 

cell counts either decreased or increased during the study period. Seropositive persons 

with differential changes in CD4+ T cell counts may have received nucleoside reverse-

transcriptase inhibitors (NRTIs), but not highly active antiretroviral therapy (HAART) 

[45]. 
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3.2.2 Relating Expression Data to Other Biological Information  

To gain insight into the biological process and to make new discoveries, the goal 

is to link gene expression profiles with external information. Some of the possible results 

that can be obtained by analyzing gene expression data are the ability to predict protein 

interactions, and their functions [47]. Incorporating expression data with other external 

information, for example, metabolic pathways of proteins, has been used to predict 

interacting proteins, protein complexes, and protein function [47]. Genes with similar 

expression profiles are more likely to encode proteins that interact [48]. 

3.2.3 Pathway Studio 9.0 Methods  

Pathway Studio Software, version 9.0, which is a pathway analysis tool supplied 

with the RESNET database, harvests the latest information from deposited literature in 

PubMed and other public sources. The software also uses a number of public and 

commercial databases, i.e., KEGG (metabolic database; http://www.genome.jp/kegg/), 

BIND (protein interaction database; http://www.bind.ca), and GO (Gene 

Ontology) http://www.geneontology.org/. The RESNET product includes a database of 

relations for mammalians and plants. For this work, we selected direct interactions, 

shortest path and the common regulators algorithms to build a network among the 

HPPCR-HIV pathogenesis and other human proteins in a cell. Relationships between 

HPPCR-HIV pathogenesis and other entities were identified using the following relation 

type filter parameters: Binding, PromoterBinding, ProtModification, miRNAEffect, Direct 

regulation and MolTransport. We applied one of the most stringent GeneSpring testing 

corrections called Bonferroni (Single Step) in this work. In Bonferroni correction, the p-

http://www.genome.jp/kegg/
http://www.bind.ca/
http://www.geneontology.org/
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value of each gene is multiplied by the number of genes in the gene list. If the corrected 

p-value is still below the error rate, the gene will be significant: i.e.: 

Corrected P-value= p-value * n (number of genes in test) <0.05 

As a consequence, with 1000 genes at a time, the highest accepted individual p-value is 

0.00005, making this correction method very stringent. With a Family-wise error rate of 

0.05 (i.e., the probability of at least one error in the family), the expected number of 

false positives will be 0.05[49]. 

3.3 Results and Discussion  

Here, we propose a supervised screening framework to select genes from our 

processed data-set. Genes with a positive differential expression values and p-values 

less than 0.05 are considered to be up-regulated candidates, while genes with negative 

values of differential expression and p-values less than 0.05 are down-regulated 

candidates. The HPPCR-HIV pathogenesis identified in the first assessment (see Table 

3.1) were also added when the network was constructed. For testing purposes in the 

PPIN prediction task, it is therefore common to choose protein pairs uniformly, which 

has higher connections from the set of protein pairs that are known to interact [50]; thus, 

we will focus on IL10, CD4, HIVEP2, CCR5 and CXCR4 HPPCR-HIV pathogenesis. 

3.3.1 Shortest Path Networks 

Biologically, it is of interest to identify the features that contribute the most to the 

classification of protein pairs. This not only helps reveal relationships between proteins, 

but also can suggest interactions in the human genome system [51]. We assessed the 
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shortest path interactions of HPPCR-HIV pathogenesis and other human proteins based 

on the miRNAEffect relation type. Strikingly, Figure 3.1 shows the extent to which the 

selected proteins (17 out of 19) have a direct and indirect relationship with their 

neighbors. Each interaction in the Pathway Studio network is represented by different 

colors and symbols of arrows and lines. 

 The IL10, CD4, CCNT1, HIVEP1 and HIVEP2, HPPCR-HIV pathogenesis have 

many associations with other human proteins in the cell. The proteins called CCR5, 

CCR3, CD4 and CXCR4 are binding directly to each other. A transcription factor, 

peroxisome proliferator-activated receptor gamma (PPARG), regulates and changes the 

localization of IL10 by molecular transport interaction. Interestingly, when the 

chemokine (C-C motif) ligand 5 (CCL5) proteins induced the expression of CCR5, 

confocal laser microscopy revealed that CCR5 was colonized with CXCR4 on the cell 

surface. The promoterBinding of the regulatory factor x 1(RFX1) to CD4 gene shows we 

can suppress the expression of CD4 by controlling RFX1 in human cell. The networks of 

some HPPCR-HIV pathogenesis (i.e., OTUD4, AGFG2, TARBP1 and HTATIP2), as 

shown in Figure 3.1, are controlled by microRNAs; conversely, other HPPCR-HIV 

pathogenesis (i.e., KAT5, VPRBP, ITIH4, CCNT1 and HTATSF1) are not controlled by 

microRNAs. 

Some entries from the HPPCR-HIV pathogenesis (i.e., HIVEP2, CCNTI and 

IL10) are more likely associated with other human proteins at least two times in the 

shortest path networks of HPPCR-HIV pathogenesis and other human proteins PPINs 

(Figure 3.1). 
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Figure 3.1: The shortest path networks of 19-(HPPCR-HIV pathogenesis) and other 

human proteins in a cell. A line connecting two nodes indicates the relationship type 

between HPPCR-HIV pathogenesis and other human proteins or microRNAs. Binding 

relationships are shown in purple; PromoterBinding relationships are shown in dashed 

green line; ProtModification relationships are shown in solid green lines; miRNAEffect 

relationships are shown in orange; DirectRegulation relationships are shown in black 

lines; and MolTransport relationships are shown in dashed red lines. The nodes 

highlighted by green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray 

bubbles are microRNAs; the remaining nodes are human proteins. 
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3.3.2 Common Regulators Networks  

Analysis of the common regulator networks of the principal 19-HPPCR-HIV 

pathogenesis displayed multiple interactions for a subset of 15 human proteins that play 

critical role in HIV pathogenesis in a human cell. Based on the ProtModification 

interaction between G protein–coupled receptor kinase 5 (GRK5) or GRK6 and 

adrenergic beta receptor kinase 1 (ADRBK1) or ADRBK2, we can suppress the 

HPPCR-HIV pathogenesis CXCR4 and CCR5 as shown in Figure 3.2. As discussed 

above for the shortest pathway networks, the protein OTUD4 is controlled by MIR142, 

MIR124-1, MIR367, MIR16-1 and MIR20A microRNAs. The expression of the eminent 

protein, IL10, is cooperatively activated by the transcription factors CEBPB, STAT4, 

JUN and IRF3. 

CD4 has 13 interactions with other human proteins in the cell.  Human proteins 

ELANE, CTSG and SYK have regulators that change the modification of CD4 in a cell 

by phosphorylation. Five out of the thirteen interactions are DirectRegulation, which 

influence CD4 activity by direct physical interaction while the rest are regulators that 

bind to the promoter of the HPPCR-HIV pathogenesis. 

Here, HIVEP2 has no correlation with other human proteins, but IL10 has 10 

promoterBinding interactions with other proteins in the human cell. CXCR4 and CCR5 

have the most interactions on this network, which means these proteins are regulated 

by a large number of human proteins in a cell. 
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Figure 3.2: The common regulators networks of 19-(HPPCR-HIV pathogenesis) in a 

cell. A line connecting two nodes indicates the relationship type between HPPCR-HIV 

pathogenesis and other human proteins or microRNAs. Binding relationships are shown 

in purple; PromoterBinding relationships are shown in dashed green lines; 

ProtModification relationships are shown in solid green lines; miRNAEffect relationships 

are shown in orange; DirectRegulation relationships are shown in black lines; and 

MolTransport relationships are shown in dashed red lines. The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 
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Hereafter, we devise our network analysis in four distinct expression sets: 

A. Expression Set One: HIV-1 seronegative vs. HIV-1 seropositive 

expression when CD4 count decreases and the drug regimen not 

indicated;  

B. Expression Set Two: HIV-1 seronegative vs. HIV-1 seropositive 

expression when CD4 count increases and the drug regimen not 

indicated;  

C. Expression Set Three: HIV-1 seronegative vs. HIV-1 seropositive 

expression with unknown CD4 count and the drug regimen is not 

indicated;  

D. Expression Set Four: HIV-1 seronegative vs. HIV-1 seropositive 

expression with unknown CD4 count and drug-naïve. 

3.3.3 Direct Interactions Networks for all Expression Sets      

Ten out of nineteen, HPPCR-HIV pathogenesis interact via DirectRegulation, 

Binding, PromoterBinding and MolTransport with other human proteins in the cell as 

shown in Figure 3.3. For instance, CCR5 has 5 DirectRegulation interactions, out of 

which 3 are with other HPPCR-HIV pathogenesis (i.e., CCL5 and CXCR4). This 

revealed that HPPCR-HIV pathogenesis are also capable of suppressing other human 

proteins that play critical role in HIV pathogenesis (i.e., CCR5). Moreover, CCR3, CD4 

and CXCR4 are connected to each other with Binding interactions. 

            The interactions between IL10 and CEBPB proved that the encoded protein 

CEBPB is important in the regulation of genes involved in immune and inflammatory 

responses. Also, Qadri et al. stated CEBPB binds to the IL-1 response element in the 

IL-6 gene [52]. Besides the Binding connections, CD4 exhibits zero interactions with 

other human proteins in the cell on this Expression Set One direct interaction network. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Qadri%20I%5BAuthor%5D&cauthor=true&cauthor_uid=22955269
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Figure 3.3 HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count 

decreases and drug regimen not indicated (Expression Set One): Direct interaction 

networks. A line connecting two nodes indicates relationship type between HPPCR-HIV 

pathogenesis and other human proteins or microRNAs. Binding relationships are shown 

in purple; PromoterBinding relationships are shown in dashed green lines; 

ProtModification relationships are shown in solid green lines; miRNAEffect relationships 

are shown in orange; DirectRegulation relationships are shown in black lines; and 

MolTransport relationships are shown in dashed red lines. The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 
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Figure 3.4 HIV-1 seronegative vs. HIV-1seropositive expression when CD4 count 

increase and drug regimen not indicated (Expression Set Two): Direct interaction 

networks. A line connecting two nodes indicates relationship type between HPPCR-HIV 

pathogenesis and other human proteins or microRNAs. Binding relationships are shown 

in purple; PromoterBinding relationships are shown in dashed green lines; 

ProtModification relationships are shown in solid green lines; miRNAEffect relationships 

are shown in orange; DirectRegulation relationships are shown in black lines; and 

MolTransport relationships are shown in dashed red lines. The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 
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Figure 3.5 HIV-1 seronegative vs. HIV-1seropositive expression when CD4 count is 

unknown and drug regimen not indicated (Expression Set Three): Direct Interaction 

networks. A line connecting two nodes indicates relationship type between HPPCR-HIV 

pathogenesis and other human proteins or microRNAs. Binding relationships are shown 

in purple; PromoterBinding relationships are shown in dashed green lines; 

ProtModification relationships are shown in solid green lines; miRNAEffect relationships 

are shown in orange; DirectRegulation relationships are shown in black lines; and 

MolTransport relationships are shown in dashed red lines. The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 

As was shown above, CCR5, CD4 and CXCR4 proteins also have similar 

Binding interactions in the HIV-1 seronegative vs. HIV-1 seropositive expressions of 
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(Figure 3.4). The HPPCR-HIV pathogenesis (i.e., CXCR4) is also mediated by ferritin 

heavy polypeptide 1(FTH1) chain nuclear translocation in the network as described by 

Li et al [53]. However, the PromoterBinding interactions of the transcription factor 

CEBPB with CCL5 and IL10 elucidate that the factor has a negative influence on the 

expressions of the proteins. 

The ligand HPPCR-HIV pathogenesis (i.e., CCL5) has DirectRegulation 

interactions with the receptor proteins CCR3 and C CR5 (Figure 3.5). In this direct 

interaction network the HPPCR-HIV pathogenesis (i.e., PPIA), which had not appeared 

in the previous analysis, has a DirectRegulation interaction with histone deacetylase 1 

(HDAC1). In this expression, three direct interaction networks for the interaction of 

human proteins that play critical role in HIV pathogenesis with other human proteins is 

mostly insignificant, only 2 of the HPPCR-HIV pathogenesis (i.e., KAT5 and PPIA) have 

Binding and DirectRegulation connections with histone acetylation and deacetylation 

(HDAC1) human protein.  
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Figure 3.6 HIV-1 seronegative vs. HIV-1seropositive expression when CD4 count is 

unknown and drug-naïve (Expression Set Four): Direct Interaction Networks. A line 

connecting two nodes indicates relationship type between HPPCR-HIV pathogenesis 

and other human proteins or microRNAs. Binding relationships are shown in purple; 

PromoterBinding relationships are shown in dashed green lines; ProtModification 

relationships are shown in solid green lines; miRNAEffect relationships are shown in 

orange; DirectRegulation relationships are shown in black lines; and MolTransport 

relationships are shown in dashed red lines. The nodes highlighted by green bubbles 

are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are microRNAs; the 

remaining nodes are other human proteins. 
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On the last expression of HIV-1 seronegative vs. HIV-1 seropositive when the 

CD4 count is unknown and drug-naïve, the direct interactions network (Figure 3.6) is a 

significantly more complex network diagram compared to the other direct interaction 

networks. Only ten out of nineteen, HPPCR-HIV pathogenesis are observed in the 

direct interaction diagram, although most of them appeared in the previous networks. 

Here they exhibit somewhat different interactions. The peptidylprolyl isomerase A 

(PPIA) has a Binding (i.e., a directly physical) interaction with the heat shock 60kDa 

protein 1 (HSPD1) and PromoterBinding interactions with the hypoxia inducible factor 1 

(HIF1A) transcription factor. The direct physical interactions of CCR5 with the heat 

shock 70kDa protein 1A (HSPA1A) indicates that the expression of CCR5 is controlled 

by HSPA1A, which has different kinds of interactions with other proteins in the human 

cell.  

The number of interactions on Expression Set Three is less compared to the 

other Expression Sets, which indicates the samples under that set is treated by 

medications that inhibit the replication of the virus in the cell.  

3.3.4 Intersection (Shortest Path and Common Regulators) Networks for all 

Expression Sets 

 In the intersection of the shortest path and common regulator networks that 

shows HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count 

decreases and drug regimen is not indicated. Amazingly, all of the 11 proteins are 

controlled by microRNAs (Figure 3.7). This means that most microRNAs are involved in 

suppressing the translation of mRNA of the HPPCR-HIV pathogenesis. For example, 
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OTUD4 is controlled by MIR101-1, MIR153, MIR103-1, MIR153-1, MIR223, MIR9-1, 

MIR367 and MIR30B. 

 

 

Figure 3.7. HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count 

decreases and drug regimen is not indicated (Expression Set One): Intersection of 

shortest path and common regulator networks. A line connecting two nodes indicates 

relationship type between HPPCR-HIV pathogenesis and other human proteins or 

microRNAs. miRNAEffect relationships are shown in orange; The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 
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Figure 3.8 HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count    

increases and drug regimen is not indicated (Expression Set Two): Intersection of 

Shortest path and common regulator networks. A line connecting two nodes indicates 

relationship type between HPPCR-HIV pathogenesis and other human proteins or 

microRNAs. miRNAEffect relationships are shown in orange; The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 

The miRNAEffect interactions (i.e., miRNA induced suppression of the gene 

mRNA) are the most predominant interactions in the intersection of the shortest path 

and commonRegulators networks of the HIV-1 seronegative vs. HIV-1 seropositive 

expression when the CD4 count increases and drug regimen is not indicated (Figure 

3.8). The translation of almost all human genes that play critical roles in HIV 
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pathogenesis in the network is controlled by different kinds of microRNAs; for example, 

we can suppress HIVEP1 in human cells by harnessing the microRNAs (i.e., MIR25, 

MIR32 and MIR367) from the human immune system.  

Like in the previous intersection networks, the networks in Figure 3.9 are also 

dominated by miRNAEffect interactions that suppress HPPCR-HIV pathogenesis 

translation.  

 

Figure 3.9.HIV-1 seronegative Vs. HIV-1 seropositive expression when CD4 count is 

unknown and drug regimen is not indicated (Expression Set Three): Intersection of 

shortest Path and common regulator networks. A line connecting two nodes indicates 

relationship type between HPPCR-HIV pathogenesis and other human proteins or 

microRNAs. miRNAEffect relationships are shown in orange; The nodes highlighted by 

green bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are 

microRNAs; the remaining nodes are other human proteins. 
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Figure 3.10.  HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count is 

unknown and drug-naïve (Expression Set Four):  Intersection of shortest path and 

common regulators networks. A line connecting two nodes indicates relationship type 

between HPPCR-HIV pathogenesis and other human proteins or microRNAs. 

miRNAEffect relationships are shown in orange; The nodes highlighted by green 

bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are microRNAs; 

the remaining nodes are other human proteins. 

OTUD4 is regulated by the highest number of microRNAs in the intersection of 

the shortest path and common regulator networks although it vanished in the direct 

interactions networks of the expression (Figure 3.10). Repetitively, MIR9-1, MIR367, 

MIR16-1, MIR148A, MIR144 and MIR218-1 microRNAs are controlling the expression 

of OTUD4 HPPCR-HIV pathogenesis.   
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Next to OTUD4, TARBP2 is regulated by the highest number of microRNAs. 

However, the networks are the same for all four different expressions (Table 3.2), the 

interactions between HPPCR-HIV pathogenesis and other human proteins are best 

seen in the direct interaction networks of Expression Set One and Two. The numbers 

of microRNAs that control HPPCR-HIV pathogenesis are similar in most cases, except 

HIVEP2, which is controlled by four miRNAs in Expression Set One and Four.  
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Table 3.2 The availability of HPPCR-HIV pathogenesis in each network for each Expression Sets and the number of 

microRNAs interactions with each HPPCR-HIV pathogenesis. 

 

Keys: (√ means present; × means absent) 

Expression Set One: HIV-1 seronegative vs. HIV-1 seropositive expression when CD4 count decreases 

and   drug regimen is not indicated; Expression Set two: HIV-1 seronegative vs. HIV-1 seropositive 

expression when CD4 count increases and drug regimen is not indicated; Expression Set Three: HIV-1 

seronegative vs. HIV-1seropositive expression with unknown CD4 count and drug regimen is not indicated; 

Expression Set Four: HIV-1 seronegative vs. HIV-1 seropositive expression with unknown CD4 count and 

drug-naïve. 

Expression 

Set One

Expression 

Set Two

Expression 

SetThree

Expression 

Set Four

HIV-Proteins 

Direct 

Interaction 

Networks

Intersection 

Networks

Number of 

Associated 

microRNAs

Direct 

Interaction 

Networks

Intersection 

Networks

Number of 

Associated 

microRNAs

Direct 

Interaction 

Networks

Intersection 

Networks

Direct 

Interaction 

Networks

Direct 

Interactions 

Networks

Intersection 

Networks

Direct 

Interaction 

Networks

OTUD4 × √ 13 × √ 13 × √ 14 × √ 14

CCR5 √ × √ × √ × √ ×

CCL5 √ × √ × √ × √ ×

CXCR4 √ √ 3 √ √ 3 √ √ 2 √ √ 2

CD4 √ √ 2 √ √ 3 √ √ 3 √ √ 3

IL10 √ √ 3 √ √ 3 √ √ 3 √ √ 3

KAT5 √ √ 1 × √ 1 √ √ 1 × √ 1

PPIA √ × × × √ × √ ×

CCR3 √ × × × √ × √ ×

CCNT1 √ × √ × √ × √ ×

HIVEP1 × √ 4 × √ 3 × √ 2 × √ 4

HTATIP2 × √ 1 × √ 1 × √ 1 × √ 2

HTATSF1 √ × √ × √ × √ ×

HIVEP2 × √ 3 × √ 2 × √ 3 × √ 3

VPRBP × × × × × × × ×

ITIH4 × × × × × × × ×

TARBP2 × √ 4 × √ 3 × √ 4 × √ 5

TARBP1 × √ 1 × √ 1 × √ 1 × √ 1

AGFG2 × √ 3 × √ 2 × √ 2 × √ 4
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The combined pathway of all four expression sets intersection networks gives us 

integrated human proteins that play critical role in HIV pathogenesis /other human 

proteins/microRNAs network. In this integrated network diagram, we have determined 

that most human genes that encode HPPCR-HIV pathogenesis are suppressed by 

some microRNAs.  

 

Figure 3.11 An Integrated HPPCR-HIV pathogenesis /other human Proteins/ 

microRNAs interaction network. A line connecting two nodes indicates relationship type 

between HPPCR-HIV pathogenesis and other human proteins or microRNAs. 

miRNAEffect relationships are shown in orange; The nodes highlighted by green 

bubbles are HPPCR-HIV pathogenesis; nodes that are in gray bubbles are microRNAs; 

the remaining nodes are other human proteins. 
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Table 3.3 Pathway Studio Gene Ontology enrichment analysis of HPPCR-HIV pathogenesis-microRNAs interaction  

      Network. 

 

 

Name Overlap % Overlap Overlapping Entities p-value Data Source

RNA Gene Silencing 4 3 MIRLET7A1,MIRLET7C,TARBP2,MIRLET7E 0.005 CPP

Mitochondrial Protein Transport 4 3 HSPA1A,HSPD1,DNAJB1,PPIF 0.005 CPP

Focal Adhesion Regulation 7 2 HBEGF,VEGFA,MAP2K1,DUSP1,ACTN1,DUSP6,SDCBP 0.010 CSP

NGFR -> AP-1/CEBPB/CREB/ELK-SRF/TP53 signaling 3 7 FOS,MAP2K1,CEBPB 0.009 RSP

EctodysplasinR -> AP-1 signaling 2 10 FOS,MAP2K1 0.021 RSP

IL6R -> CEBP/ELK-SRF signaling 2 8 MAP2K1,CEBPB 0.032 RSP

AdenosineR -> AP-1 signaling 2 8 FOS,MAP2K1 0.035 RSP

IL5R -> SOX4 signaling 1 25 SDCBP 0.047 RSP

response to stress 9 3 FOS,HSPA1A,SGK1,IL10,CTSB,SQSTM1,RARA,DNAJB1,SERP10.000 BP

negative regulation of apoptosis 9 3 VEGFA,HSPA1A,CDKN1A,HSPD1,SGK1,CD44,PLAUR,SLC2A3,IL100.000 BP

cell migration 7 4 HBEGF,VEGFA,CD44,CXCR4,CUL3,BTG1,NDEL1 0.000 BP

response to organic cyclic compound 8 3 FOS,CDKN1A,HSPD1,CD44,ACSL1,NAMPT,DUSP6,CTSB 0.000 BP

MyD88-dependent toll-like RSP 5 6 FOS,MAP2K1,HSPD1,MAPK7,DUSP6 0.000 BP

anti-apoptosis 7 2 VEGFA,HSPA1A,CEBPB,HSPD1,IL10,SQSTM1,HTATIP2 0.000 BP

response to organic substance 6 3 CDKN1A,DUSP1,HSPD1,AQP9,ACSL1,IL10 0.000 BP

regulation of apoptosis 7 2 HIF1A,DUSP1,ACTN1,CTSB,BTG1,HTATIP2,PPIF 0.000 BP

phosphorylation 9 1 MAP2K1,CDKN1A,SGK1,MAPK7,PLAUR,HK2,STK17B,GIT2,DYRK20.000 BP

stress-activated MAPK cascade 4 7 FOS,MAP2K1,MAPK7,DUSP6 0.000 BP

protein heterodimerization activity 9 2 VEGFA,FOS,CAPN2,HIF1A,CEBPB,HSPD1,RARA,SDCBP,EXT10.000 MF

protein homodimerization activity 10 1 VEGFA,CEBPB,ACTN1,CD4,NAMPT,SQSTM1,SDCBP,EXT1,PSPH,TARBP20.000 MF

protein complex binding 6 2 HIF1A,CDKN1A,HSPD1,CTSB,KAT5,NDEL1 0.000 MF

kinase activity 10 1 MAP2K1,CDKN1A,SGK1,MAPK7,PLAUR,HK2,STK17B,PLK3,GIT2,DYRK20.000 MF

glucose binding 2 15 SLC2A3,HK2 0.001 MF

AU-rich element binding 2 14 ZFP36,ZFP36L1 0.001 MF

MAP kinase tyrosine-serine-threonine phosphatase activity 2 13 DUSP1,DUSP6 0.001 MF

cyclin binding 2 12 CDKN1A,CUL3 0.001 MF

cell surface binding 2 11 VEGFA,HSPD1 0.001 MF

CPP  Cell Process Pathways

CSP  Cell Signaling Pathways

RSP  Receptor Signaling Pathways

BP biological_process

MF molecular_function
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3.3.5 Pathway Studio Gene Ontology Enrichment Analysis  

It can clearly be seen that four of the expressed genes from the cell process 

pathway are associated with RNA gene silencing and another four are also found for 

mitochondrial protein transport. The most interesting group attribute in the receptor 

signaling pathways is that of the interleukin-5 receptor (IL5R), which belongs to the type 

I cytokine receptor family and is a heterodimer composed of two polypeptide chains, 

exclusively expressed by the transcriptional factor SOX-4. SOX4 is expressed in 

lymphocytes (B and T) and is required for B lymphocyte development.  

The size of the groups that are involved in biological processes are much larger 

than that expected by chance for this process, meaning that they are over-represented. 

The most significantly upregulated genes (i.e., p-value < 0.01), are associated with anti-

apoptosis and response to stress. Particularly, a gene called vascular endothelial 

growth factor-A(VEGF-A),which is under the control of many microRNAs (Figure 3.11), 

has various effects, including promoting cell migration and inhibiting apoptosis as it is 

shown in (Table 3.3).  

The highly enriched network (i.e., CD4, KAT5) from the molecular function 

category carry out the protein is complex binding functions in a cell. This means that 

they interact selectively and non-covalently in the cell with any protein complex (a 

complex of two or more proteins that may include other non-protein molecules). Even 

though it has seemingly few occurrences, kinase activity is one of the functions carried 

out by some genes that encode for network; however, the expression of the human 

genes that play critical role in HIV pathogenesis can be suppressed by some 

microRNAs. 
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3.4  Conclusion:  

Computational methods can be very effective in assisting experimental efforts to 

show interacting protein pairs within a single organism. This study applied the Pathway 

Studio software to build networks integrating human proteins that play critical role in HIV 

pathogenesis and other human proteins that interact with each other, as well as 

networks involving miRNAs that target mRNAs of genes encoding network. Features 

derived from multiple genomic and functional data sources, coupled with exploiting our 

knowledge of the human proteins interactome, were integrated in a supervised learning 

framework. Hence, we constructed the human protein-protein pathways using the 

microarray data of functional genomic relationships in HIV-1 disease to expedite the 

elucidation of the important mechanisms of HIV-human cell interactions and their 

implications. 

In the final PPI networks of our analysis, we generated a new hypothesis based 

on the commonality of the selected proteins in a cell. Most of the human proteins we 

used for the analysis are regulatory proteins that drastically enhance the efficiency of 

HIV virus; this in turn allows us to be able to understand the association of each protein 

with other human proteins that have fewer roles in HIV pathogenesis and microRNAs. 

Thus, human proteins which have critical role in HIV pathogenesis interacted with other 

common human proteins and they are regulated by common transcription factors. 

Finally, the important practical aspect of this study offers many options for suppressing 

the expression of the human-genes that play critical role in HIV pathogenesis, and thus 

could of interest in developing new anti-HIV drugs. 
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Chapter 4 

CLOSING REMARKS 

An ample description on protein-protein interactions would involve the structure 

of the proteins and everything that have associations with them. Since proteins play 

great roles in carrying out biochemical functions in a living cell, many studies have been 

undertaken to understand how they are localized, how they are regulated and how they 

are crystallized. But, we should keep in mind that we are still in the process of 

qualitatively cataloging protein-protein interactions and paying too much attention to the 

quantitative and dynamic aspects may be premature for many cases [54].  

In this report we have tried to analyze one seemingly small but very important 

issue, the characteristics of interfacial water molecules at protein-protein interfaces. 

This will help us, as we begin to gain an understanding of the interactions of polar and 

hydrophobic biologically relevant proteins. The availability of information about 

interfacial water molecules could assist our understanding and localizations on the type 

of each residue when we are designing crystallization experiments.  

In addition to the studies on the role of water molecules in the binding sites of 

protein-protein complexes, network analyses of PPIs are undoubtedly powerful as they 

give specific functional implications of an interaction. To date, we understand only 10% 

of all human protein-protein interactions [55] and some recent studies estimate that we 

have identified only 50% of all yeast interactions; hence, in order to know the dynamics 

and kinetics of protein complexes, we first must explore their interactions via 

bioinformatics tools. The study on HPPCR-HIV pathogenesis and other human proteins 
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pathway needs lots of time and huge dataset to be able to address each and every 

mechanism of the interactions, but in this small dataset and short period of time we are 

able to identify the regulatory proteins and microRNAs that drastically enhance the 

replication of HIV in human cell. 
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Appendix I: List of Homodimeric 
Protein Complexes examined in 
the study  
 

PDB ID 
Chain 
ID 

Chain 
Length 

1H0H A/B 977 

1H54 A/B 754 

1EX0 A/B 731 

1H41 A/B 708 

1DJX A/B 624 

1AOR A/B 605 

1G8M A/B 593 

1B3U A/B 588 

1F0X A/B 571 

1AMU A/B 563 

1ASO A/B 552 

1GNL A/B 544 

1HDH A/B 536 

1F0L A/B 535 

1AUI A/B 521 

1GOI A/B 499 

1E8C A/B 498 

1DDZ A/B 496 

1FEC A/B 490 

1E5X A/B 486 

1DPG A/B 485 

1DNP A/B 471 

1H80 A/B 464 

1F60 A/B 458 

1GG4 A/B 452 

1HEI A/B 451 

1B8A A/B 438 

1H3F A/B 432 

1HQS A/B 423 

1BK5 A/B 422 

1EJD A/B 419 

1GIQ A/B 413 

1AJS A/B 412 

1GWI A/B 411 

1DKL A/B 410 

1CQX A/B 403 

1AZT A/B 402 

1FP3 A/B 402 

1CHM A/B 401 

1FC4 A/B 401 

1AXK A/B 394 

1DQS A/B 393 

1G4M A/B 393 

1CI9 A/B 392 

1EI1 A/B 391 

1ELU A/B 390 

1FNN A/B 389 

1GDE A/B 389 

1B5P A/B 385 

1EG5 A/B 384 

1AJ8 A/B 371 

1FN9 A/B 365 

1H7S A/B 365 

1F0K A/B 364 

1GU7 A/B 364 

1CZF A/B 362 

1BJN A/B 360 

1DOS A/B 358 

1EBF A/B 358 

1C1D A/B 355 

1DYS A/B 348 

1EK6 A/B 348 

1GXR A/B 337 

1GXM A/B 332 

1E2K A/B 331 

12AS A/B 330 

1DPJ A/B 329 

1FVR A/B 327 

1GVE A/B 327 

1BLX A/B 326 

1BSL A/B 324 

1F06 A/B 320 

1DKU A/B 317 

1DL5 A/B 317 

1EFV A/B 315 

1E19. A/B 314 

1H4R A/B 314 

1DMH A/B 311 

1EUD A/B 311 

1F0C A/B 305 

1H1N A/B 305 

1F0Y A/B 302 

1A4I A/B 301 

1DLE A/B 298 
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1H3I A/B 293 

1BF6 A/B 291 

1E5R A/B 290 

1DBQ A/B 289 

1GUD A/B 288 

1E9G A/B 286 

1GL4 A/B 285 

1DQZ A/B 280 

1BKP A/B 278 

1A8U A/B 277 

1DEU A/B 277 

1EKQ A/B 272 

1CP2 A/B 269 

1AD1 A/B 266 

1EE8 A/B 266 

1B9M A/B 265 

1CY9 A/B 264 

1DJ0 A/B 264 

1GEE A/B 261 

1H32 A/B 261 

1G60 A/B 260 

1GK9 A/B 260 

1E42. A/B 258 

1FJH A/B 257 

1H0B A/B 256 

1G0H A/B 252 

1ABR A/B 251 

1E2W A/B 251 

1F75 A/B 249 

1B12 A/B 248 

1GEQ A/B 248 

1GV3 A/B 248 

1B5E A/B 246 

1H7E A/B 245 

1AGJ A/B 242 

1DEK A/B 241 

1F5V A/B 240 

1B5F A/B 239 

1HW1 A/B 239 

1CQ3 A/B 233 

1A7T A/B 232 

1FJ2 A/B 232 

1DQN A/B 230 

1EKE A/B 230 

1FL1 A/B 230 

1GWC A/B 230 

1EZI A/B 228 

1G61 A/B 228 

1GXY A/B 226 

1AVW A/B 223 

1EQ9 A/B 222 

1EYQ A/B 222 

1EUV A/B 221 

1GQP A/B 221 

1AB8 A/B 220 

1AUO A/B 218 

1G57 A/B 217 

1EEJ A/B 216 

1A04 A/B 215 

1BQU A/B 215 

1AJK A/B 214 

1AJO A/B 214 

1E4Y A/B 214 

1GTV A/B 214 

1GNW A/B 211 

1EU3 A/B 210 

1HW5 A/B 210 

1G0S A/B 209 

1GM7 A/B 209 

1DJL A/B 207 

1DOW A/B 205 

1H6P A/B 203 

1F6B A/B 198 

1FJR A/B 195 

1AOE A/B 192 

1FBT A/B 190 

1ATZ A/B 189 

1BPL A/B 189 

1CR5 A/B 189 

1EX2 A/B 189 

1HRU A/B 188 

1D2O A/B 187 

1G2Q A/B 187 

1GXJ A/B 186 

1H1O A/B 183 

1HGX A/B 183 

1F5M A/B 180 

1F3V A/B 179 

1GHE A/B 177 

1AG9 A/B 175 
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1AOC A/B 175 

1GWY A/B 175 

1ALV A/B 173 

1DVK A/B 173 

1E6C A/B 173 

1BTK A/B 169 

1BO4 A/B 168 

1D1G A/B 168 

1AU1 A/B 166 

1EPA A/B 164 

1BEB A/B 162 

1EVX A/B 162 

1EXT A/B 162 

1F35 A/B 162 

1D1Q A/B 161 

1ALL A/B 160 

1DYO A/B 160 

1DZK A/B 157 

1E7L A/B 157 

1ELK A/B 157 

1EYV A/B 156 

1EM9 A/B 154 

1AQZ A/B 149 

1F2T A/B 149 

1F08 A/B 148 

1AOH A/B 147 

1EGI A/B 147 

1H97 A/B 147 

1GVJ A/B 146 

1EAQ A/B 140 

1F46 A/B 140 

1H9S A/B 140 

1DQE A/B 137 

1F7D A/B 136 

1BKZ A/B 135 

1F9Z A/B 135 

1DM9 A/B 133 

1FTP A/B 133 

1EMU A/B 132 

1BBH A/B 131 

1ELR A/B 131 

1HPC A/B 131 

1AYO A/B 130 

1COZ A/B 129 

1GY6 A/B 127 

1DBW A/B 126 

1EAJ A/B 126 

1ECS A/B 126 

1AKS A/B 125 

1BYF A/B 125 

1DY5 A/B 124 

1GU2 A/B 124 

1BM9 A/B 122 

1D9C A/B 121 

1B2P A/B 119 

1BND A/B 119 

1BHD A/B 118 

1DJ7 A/B 117 

1H4X A/B 117 

1H8U A/B 117 

1G8E A/B 116 

1F86 A/B 115 

1HXR A/B 115 

1EVH A/B 112 

1F9M A/B 112 

1B0N A/B 111 

1A2P A/B 110 

1AC6 A/B 110 

1ECM A/B 109 

1GYO A/B 109 

1CMC A/B 104 

1D4T A/B 104 

1D0Q A/B 103 

1AYA A/B 101 

1CQK A/B 101 

1CQM A/B 101 
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Appendix II Biological Protein-protein complexes examined in study with interfaces parameters  

 

 

 

 

 

 

 

 

 

 

 

 

12AS_A/12AS_B 1A4Y_A/1A4Y_B 1A7T_A/1A7T_B 1AOR_A/1AOR_B 1AQ6_A/1AQ6_B 

1AZT_A/1AZT_B 1B34_A/1B34_B 1B3A_A/1B3A_B 1BQU_A/1BQU_B 1BUH_A/1BUH_B 

1CY9_A/1CY9_B 1D09_A/1D09_B 1D0Q_A/1D0Q_B 1DQE_A/1DQE_B 1DQS_A/1DQS_B 

1EAJ_A/1EAJ_B 1ECS_A/1ECS_B 1EE8_A/1EE8_B 1ETH_A/1ETH_B 1EUV_A/1EUV_B 

1F75_A/1F75_B 1FBT_A/1FBT_B 1FJH_A/1FJH_B 1GPE_A/1GPE_B 1GU7_A/1GU7_B 

1H41_A/1H41_B 1H4R_A/1H4R_B 1H54_A/1H54_B 1LFD_A/1LFD_B 1MSP_A/1MSP_B 

1QFH_A/1QFH_B 1QOR_A/1QOR_B 1RRP_A/1RRP_B 1XSO_A/1XSO_B 1YCS_A/1YCS_B 

1A8U_A/1A8U_B 1AB8_A/1AB8_B 1AC6_A/1AC6_B 1AT3_A/1AT3_B 1AU1_A/1AU1_B 

1B5P_A/1B5P_B 1BBH_A/1BBH_B 1BK5_A/1BK5_B 1BYK_A/1BYK_B 1CHM_A/1CHM_B 

1D1G_A/1D1G_B 1D2O_A/1D2O_B 1D9C_A/1D9C_B 1DVK_A/1DVK_B 1E19_A/1E19_B 

1EEJ_A/1EEJ_B 1EG5_A/1EG5_B 1EG9_A/1EG9_B 1EX2_A/1EX2_B 1EZI_A/1EZI_B 

1FP3_A/1FP3_B 1FSS_A/1FSS_B 1FTP_A/1FTP_B 1GV3_A/1GV3_B 1GVE_A/1GVE_B 

1H6P_A/1H6P_B 1HJR_A/1HJR_C 1HPC_A/1HPC_B 1ONE_A/1ONE_B 1PDK_A/1PDK_B 

1SMP_I/1SMP_A 1SPU_A/1SPU_B 1STF_E/1STF_I 2AE2_A/2AE2_B 2HHM_A/2HHM_B 

1AD1_A/1AD1_B 1AK4_A/1AK4_D 1ALV_A/1ALV_B 1AVW_A/1AVW_B 1CQK_A/1CQK_B 

1BKD_R/1BKD_S 1BKP_A/1BKP_B 1BKZ_A/1BKZ_B 1CMC_A/1CMC_B 1CQ3_A/1CQ3_B 

1DDZ_A/1DDZ_B 1DKU_A/1DKU_B 1DLE_A/1DLE_B 1E5X_A/1E5X_B 4SGB_I/4SGB_E 

1EGI_A/1EGI_B 1EI1_A/1EI1_B 1EKE_A/1EKE_B 1F34_A/1F34_B 1F6Y_A/1F6Y_B 

1G0H_A/1G0H_B 1G60_A/1G60_B 1G8E_A/1G8E_B 1GYO_A/1GYO_B 1H3F_A/1H3F_B 

1I2M_A/1I2M_B 1ISA_A/1ISA_B 1ITB_A/1ITB_B 1QAE_A/1QAE_B 1QAV_A/1QAV_B 

1TAB_I/1TAB_E 1TGS_I/1TGS_Z 1TRK_A/1TRK_B 2PFL_A/2PFL_B 2PTC_I/2PTC_E 

1AOC_A/1AOC_B 1AOH_A/1AOH_B 1AOM_A/1AOM_B 1ASO_A/1ASO_B 1AUO_A/1AUO_B 

1BO1_A/1BO1_B 1BO4_A/1BO4_B 1BPL_A/1BPL_B 1BVN_T/1BVN_P 1CI9_A/1CI9_B 

1DMH_A/1DMH_B 1DN1_A/1DN1_B 1DOR_A/1DOR_B 1DQZ_A/1DQZ_B 1E5R_A/1E5R_B 

1EMV_A/1EMV_B 1EPA_A/1EPA_B 1EQ9_A/1EQ9_B 1EX0_A/1EX0_B 1F0K_A/1F0K_B 

1GDE_A/1GDE_B 1GNW_A/1GNW_B 1GOI_A/1GOI_B 1GUX_A/1GUX_B 1GXJ_A/1GXJ_B 

1JTD_A/1JTD_B 1KAC_A/1KAC_B 1KPE_A/1KPE_B 1NSE_A/1NSE_B 1PP2_L/1PP2_R 

1VLT_A/1VLT_B 1VOK_A/1VOK_B 1WQ1_R/1WQ1_G 1ZBD_A/1ZBD_B 2PCB_A/2PCB_B 
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Appendix III. Non-biological Protein-protein complexes examined in study with interfaces parameters 

1A04_A/1A04_B 1DK7_A/1DK7_B 1FJR_A/1FJR_B 1GWY_A/1GWY_B 1IBQ_A/1IBQ_B 

1AGJ_A/1AGJ_B 1DKL_A/1DKL_B 1FMJ_A/1FMJ_B 1GXM_A/1GXM_B 1ICP_A/1ICP_B 

1AJK_A/1AJK_B 1DNP_A/1DNP_B 1FMT_A/1FMT_B 1GXY_A/1GXY_B 1IK7_A/1IK7_B 

1AMU_A/1AMU_B 1DVG_A/1DVG_B 1FNN_A/1FNN_B 1H03_P/1H03_Q 1IM8_A/1IM8_B 

1AOE_A/1AOE_B 1DY5_A/1DY5_B 1FSL_A/1FSL_B 1H0B_A/1H0B_B 1IN0_A/1IN0_B 

1AQZ_A/1AQZ_B 1DZK_A/1DZK_B 1FVR_A/1FVR_B 1H1O_A/1H1O_B 1IO7_A/1IO7_B 

1ATL_A/1ATL_B 1E0X_A/1E0X_B 1FZY_A/1FZY_B 1H3G_A/1H3G_B 1IOO_A/1IOO_B 

1B3U_A/1B3U_B 1E30_A/1E30_B 1G1B_A/1G1B_B 1H4P_A/1H4P_B 1IQ4_A/1IQ4_B 

1BF6_A/1BF6_B 1E6C_A/1E6C_B 1G1K_A/1G1K_B 1H6G_A/1H6G_B 1IT2_A/1IT2_B 

1BGE_A/1BGE_B 1E6F_A/1E6F_B 1G4M_A/1G4M_B 1H7S_A/1H7S_B 1IU1_A/1IU1_B 

1BIR_A/1BIR_B 1E8C_A/1E8C_B 1G61_A/1G61_B 1H8U_A/1H8U_B 1IWM_A/1IWM_B 

1C0E_A/1C0E_B 1E9N_A/1E9N_B 1GEQ_A/1GEQ_B 1HA3_A/1HA3_B 1IYK_A/1IYK_B 

1CQM_A/1CQM_B 1EAQ_A/1EAQ_B 1GG4_A/1GG4_B 1HJZ_A/1HJZ_B 1IZ5_A/1IZ5_B 

1CQX_A/1CQX_B 1ELK_A/1ELK_B 1GHE_A/1GHE_B 1HM6_A/1HM6_B 1J2F_A/1J2F_B 

1CZF_A/1CZF_B 1ETP_A/1ETP_B 1GIQ_A/1GIQ_B 1HPL_A/1HPL_B 1J6R_A/1J6R_B 

1D1Q_A/1D1Q_B 1EU3_A/1EU3_B 1GOU_A/1GOU_B 1HX3_A/1HX3_B 1J7J_A/1J7J_B 

1D7J_A/1D7J_B 1F0X_A/1F0X_B 1GQP_A/1GQP_B 1HXR_A/1HXR_B 1J83_A/1J83_B 

1DBW_A/1DBW_B 1F2K_A/1F2K_B 1GT6_A/1GT6_B 1HY5_A/1HY5_B 1J96_A/1J96_B 

1DBX_A/1DBX_B 1F35_A/1F35_B 1GUD_A/1GUD_B 1I19_A/1I19_B 1J97_A/1J97_B 

1DJX_A/1DJX_B 1F9M_A/1F9M_B 1GV4_A/1GV4_B 1I7K_A/1I7K_B 1JBB_A/1JBB_B 

1JCL_A/1JCL_B 1JH6_A/1JH6_B 1JPA_A/1JPA_B 1JSS_A/1JSS_B 
 1JFR_A/1JFR_B 1JIH_A/1JIH_B 1JQE_A/1JQE_B 1JU2_A/1JU2_B 
 1JFU_A/1JFU_B 1JJT_A/1JJT_B 1JR2_A/1JR2_B 1JVA_A/1JVA_B 
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